forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmerge_sort.py
76 lines (61 loc) · 1.92 KB
/
merge_sort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
"""
This is a pure python implementation of the merge sort algorithm
For doctests run following command:
python -m doctest -v merge_sort.py
or
python3 -m doctest -v merge_sort.py
For manual testing run:
python merge_sort.py
"""
from __future__ import print_function
def merge_sort(collection):
"""Pure implementation of the merge sort algorithm in Python
:param collection: some mutable ordered collection with heterogeneous
comparable items inside
:return: the same collection ordered by ascending
Examples:
>>> merge_sort([0, 5, 3, 2, 2])
[0, 2, 2, 3, 5]
>>> merge_sort([])
[]
>>> merge_sort([-2, -5, -45])
[-45, -5, -2]
"""
length = len(collection)
if length > 1:
midpoint = length // 2
left_half = merge_sort(collection[:midpoint])
right_half = merge_sort(collection[midpoint:])
i = 0
j = 0
k = 0
left_length = len(left_half)
right_length = len(right_half)
while i < left_length and j < right_length:
if left_half[i] < right_half[j]:
collection[k] = left_half[i]
i += 1
else:
collection[k] = right_half[j]
j += 1
k += 1
while i < left_length:
collection[k] = left_half[i]
i += 1
k += 1
while j < right_length:
collection[k] = right_half[j]
j += 1
k += 1
return collection
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input
else:
input_function = input
user_input = input_function('Enter numbers separated by a comma:\n')
unsorted = [int(item) for item in user_input.split(',')]
print(merge_sort(unsorted))