forked from MAMEM/eeg-processing-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexampleCombiCCA.m
45 lines (40 loc) · 1.61 KB
/
exampleCombiCCA.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
m_secs = 0.5:0.5:4;
for ii=1:8
for jj = 1:8
sess = eegtoolkit.util.Session;
% sess.loadAll(4);
% sess.loadAll(4);
sess.loadSubject(4,ii);
ss = eegtoolkit.preprocessing.SampleSelection;
ss.channels = 1:8;
% ss.sampleRange = [75,1024+74];
ss.sampleRange = [75,74+256*m_secs(jj)];
% ss.sampleRange = [1,1140];
% 75:1024+74
[z,p,k]=butter(3,[6,80]/128);
[s,g]=zp2sos(z,p,k);
Hd = dfilt.df2sos(s,g);
df = eegtoolkit.preprocessing.DigitalFilter; %
df.filt = Hd;
refer = eegtoolkit.preprocessing.Rereferencing;
refer.meanSignal = 1;
extr = eegtoolkit.featextraction.RawSignal;
sti_f = [9.25, 11.25, 13.25, 9.75, 11.75, 13.75, 10.25, 12.25, 14.25, 10.75, 12.75, 14.75];
classif = eegtoolkit.classification.CombiCCA(sti_f,4,256*m_secs(jj),256);
classif.baseClassifier = eegtoolkit.classification.MaxChooser;
experiment = eegtoolkit.experiment.Experimenter;
experiment.session = sess;
experiment.preprocessing = {ss,refer,df};
experiment.featextraction = extr;
experiment.classification = classif;
% experiment.evalMethod = experiment.EVAL_METHOD_LOOCV;
% experiment.run();
experiment.evalMethod = experiment.EVAL_METHOD_LOBO;
experiment.run();
for i=1:length(experiment.results)
accuracy(i) = experiment.results{i}.getAccuracy();
end
acc2(ii,jj) = mean(accuracy);
% accuracy = experiment.results{1}.getAccuracy();
end
end