forked from MAMEM/eeg-processing-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
exampleEpoc.m
53 lines (44 loc) · 1.83 KB
/
exampleEpoc.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
% Load the data. Call this once outside of the script so you dont have to
% load the data again and again. Make sure the dataset is included in your
% Matlab path
% sess = eegtoolkit.util.Session;
% sess.loadAll(3); %its best to do this once, outside the script (too much
% time)
%Load a filter from the samples
load filters/epocfilter;
% 7 = O1
% 8 = O2
% Stimulus frequencies. The order corresponds to the label id (12Hz=1,
% 10Hz=2, 8.57Hz=3, 7.5Hz=4, 6.66Hz=5)
% If the order is wrong, then the "Max" classifier will not work properly
sti_f = [12,10,8.57,7.5,6.66];
% CCA feat extraction method
extr = eegtoolkit.featextraction.CCA(sti_f,1:4,128,4);
refer = eegtoolkit.preprocessing.Rereferencing;
%Subtract the mean from the signal
refer.meanSignal = 1;
ss = eegtoolkit.preprocessing.SampleSelection;
ss.sampleRange = [64,640]; % Specify the sample range to be used for each Trial
ss.channels = 6:9; % Specify the channel(s) to be used
df = eegtoolkit.preprocessing.DigitalFilter; % Apply a filter to the raw data
df.filt = Hbp; % Hbp is a filter built with "filterbuilder" matlab function
%Configure the classifier
classif = eegtoolkit.classification.MaxChooser;
%Set the Experimenter wrapper class
experiment = eegtoolkit.experiment.Experimenter;
experiment.session = sess;
% Add the preprocessing steps (order is taken into account)
experiment.preprocessing = {ss,df};
experiment.featextraction = extr;
experiment.classification = classif;
experiment.evalMethod = experiment.EVAL_METHOD_LOSO; % specify that you want a "leave one subject out" (default is LOOCV)
experiment.run();
for i=1:length(experiment.results)
accuracies(i) = experiment.results{i}.getAccuracy();
end
accuracies'
%mean accuracy for all subjects
fprintf('mean acc = %f\n', mean(accuracies));
%get the configuration used (for reporting)
% experiment.getExperimentInfo
% experiment.getTime