forked from Userac123/cc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
395 lines (317 loc) · 13.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import argparse
import math
import h5py
import numpy as np
import tensorflow as tf
import socket
import importlib
from datetime import datetime
import os
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = os.path.dirname(BASE_DIR)
sys.path.append(BASE_DIR)
sys.path.append(ROOT_DIR)
sys.path.append(os.path.join(ROOT_DIR, 'models'))
sys.path.append(os.path.join(ROOT_DIR, 'utils'))
import provider
import tf_util
import indoor3d_util
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 1]')
parser.add_argument('--model', default='model_sem_seg', help='Model name [default: model_sem_seg]')
parser.add_argument('--log', default='log', help='Log dir [default: log]')
parser.add_argument('--num_point', type=int, default=4096, help='Point number [default: 4096]')
parser.add_argument('--max_epoch', type=int, default=101, help='Epoch to run [default: 101]')
parser.add_argument('--batch_size', type=int, default=2, help='Batch Size during training for each GPU [default: 12]')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]')
parser.add_argument('--decay_step', type=int, default=300000, help='Decay step for lr decay [default: 300000]')
parser.add_argument('--decay_rate', type=float, default=0.5, help='Decay rate for lr decay [default: 0.5]')
parser.add_argument('--test_area', type=int, default=6, help='Which area to use for test, option: 1-6 [default: 6]')
parser.add_argument('--test_room_data_filelist', default='./meta/area6_data_label.txt',
help='TXT filename, filelist, each line is a test room data label file.')
parser.add_argument('--coarse_loss', type=float, default=1, help='Whether to use coarse loss')
parser.add_argument('--mmd_loss', type=float, default=200, help='Whether to use mmd loss')
parser.add_argument('--pfs', action='store_true', help='Whether to use pfs')
parser.add_argument('--fuct', action='store_true', help='Whether to use fully concated features')
FLAGS = parser.parse_args()
# TOWER_NAME = 'tower'
GPU_INDEX = FLAGS.gpu
BATCH_SIZE = FLAGS.batch_size
NUM_POINT = FLAGS.num_point
MAX_EPOCH = FLAGS.max_epoch
NUM_POINT = FLAGS.num_point
BASE_LEARNING_RATE = FLAGS.learning_rate
MOMENTUM = FLAGS.momentum
OPTIMIZER = FLAGS.optimizer
DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
COARSE_FLAG = FLAGS.coarse_loss
MMD_FLAG = FLAGS.mmd_loss
PFS_FLAG = FLAGS.pfs
FUCT_FLAG = FLAGS.fuct
os.environ['CUDA_VISIBLE_DEVICES'] = str(GPU_INDEX)
MODEL = importlib.import_module(FLAGS.model) # import network module
MODEL_FILE = os.path.join(ROOT_DIR, 'models', FLAGS.model+'.py')
LOG_DIR = FLAGS.log
if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR)
# # os.system('cp model.py %s' % (LOG_DIR))
os.system('cp %s %s' % (MODEL_FILE, LOG_DIR)) # bkp of model def
os.system('cp train.py %s' % (LOG_DIR))
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w')
LOG_FOUT.write(str(FLAGS)+'\n')
MAX_NUM_POINT = 4096
NUM_CLASSES = 13
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
HOSTNAME = socket.gethostname()
ALL_FILES = provider.getDataFiles('indoor3d_sem_seg_hdf5_data/all_files.txt')
room_filelist = [line.rstrip() for line in open('indoor3d_sem_seg_hdf5_data/room_filelist.txt')]
print (len(room_filelist))
# Load ALL data
data_batch_list = []
label_batch_list = []
for h5_filename in ALL_FILES:
data_batch, label_batch = provider.loadDataFile(h5_filename)
data_batch_list.append(data_batch)
label_batch_list.append(label_batch)
data_batches = np.concatenate(data_batch_list, 0)
label_batches = np.concatenate(label_batch_list, 0)
print(data_batches.shape)
print(label_batches.shape)
test_area = 'Area_'+str(FLAGS.test_area)
train_idxs = []
test_idxs = []
for i,room_name in enumerate(room_filelist):
if test_area in room_name:
test_idxs.append(i)
else:
train_idxs.append(i)
train_data = data_batches[train_idxs,...]
train_label = label_batches[train_idxs]
test_data = data_batches[test_idxs,...]
test_label = label_batches[test_idxs]
print(train_data.shape, train_label.shape)
print(test_data.shape, test_label.shape)
TEST_ROOM_PATH_LIST = [os.path.join(ROOT_DIR,line.rstrip()) for line in open(FLAGS.test_room_data_filelist)]
BEST_MEAN_IOU = 0
BEST_ALL_ACC = 0
BEST_CLS_ACC = 0
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
def get_learning_rate(batch):
learning_rate = tf.train.exponential_decay(
BASE_LEARNING_RATE, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
DECAY_STEP, # Decay step.
DECAY_RATE, # Decay rate.
staircase=True)
learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE!!
return learning_rate
def get_bn_decay(batch):
bn_momentum = tf.train.exponential_decay(
BN_INIT_DECAY,
batch*BATCH_SIZE,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
return bn_decay
def average_gradients(tower_grads):
"""Calculate average gradient for each shared variable across all towers.
Note that this function provides a synchronization point across all towers.
Args:
tower_grads: List of lists of (gradient, variable) tuples. The outer list
is over individual gradients. The inner list is over the gradient
calculation for each tower.
Returns:
List of pairs of (gradient, variable) where the gradient has been
averaged across all towers.
"""
average_grads = []
for grad_and_vars in zip(*tower_grads):
# Note that each grad_and_vars looks like the following:
# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
grads = []
for g, _ in grad_and_vars:
expanded_g = tf.expand_dims(g, 0)
grads.append(expanded_g)
# Average over the 'tower' dimension.
grad = tf.concat(grads, 0)
grad = tf.reduce_mean(grad, 0)
# Keep in mind that the Variables are redundant because they are shared
# across towers. So .. we will just return the first tower's pointer to
# the Variable.
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads
def train():
# with tf.Graph().as_default(), tf.device('/cpu:0'):
with tf.Graph().as_default():
with tf.device('/gpu:'+str(GPU_INDEX)):
batch = tf.Variable(0, trainable=False)
bn_decay = get_bn_decay(batch)
tf.summary.scalar('bn_decay', bn_decay)
learning_rate = get_learning_rate(batch)
tf.summary.scalar('learning_rate', learning_rate)
trainer = tf.train.AdamOptimizer(learning_rate)
pointclouds_pl, labels_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT)
is_training_pl = tf.placeholder(tf.bool, shape=())
pred, end_points = MODEL.get_model(pointclouds_pl, labels_pl, is_training_pl, bn_decay,
COARSE_FLAG, MMD_FLAG, PFS_FLAG, FUCT_FLAG)
loss = MODEL.get_loss(pred, labels_pl, end_points, COARSE_FLAG, MMD_FLAG)
tf.summary.scalar('loss', loss)
# correct = tf.equal(tf.argmax(pred, 2), tf.to_int64(labels_phs[-1]))
correct = tf.equal(tf.argmax(pred, 2), tf.to_int64(labels_pl))
accuracy = tf.reduce_sum(tf.cast(correct, tf.float32)) / float(BATCH_SIZE*NUM_POINT)
tf.summary.scalar('accuracy', accuracy)
train_op = trainer.minimize(loss, global_step=batch)
saver = tf.train.Saver(tf.global_variables(), max_to_keep=50)
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
sess = tf.Session(config=config)
# Add summary writers
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'),
sess.graph)
test_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'test'))
# Init variables for two GPUs
init = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
sess.run(init)
ops = {'pointclouds_pl': pointclouds_pl,
'labels_pl': labels_pl,
'is_training_pl': is_training_pl,
'pred': pred,
'loss': loss,
'train_op': train_op,
'merged': merged,
'step': batch}
for epoch in range(MAX_EPOCH):
log_string('**** EPOCH %03d ****' % (epoch))
sys.stdout.flush()
train_one_epoch(sess, ops, train_writer)
# if epoch >= 10:
best_all_acc_flag, best_cls_acc_flag, best_mean_iou_flag = eval_one_epoch(sess, ops, test_writer)
if best_all_acc_flag == True:
save_path = saver.save(sess, os.path.join(LOG_DIR,'best_all_acc_model'+'.ckpt'))
log_string("Model saved in file: %s" % save_path)
if best_cls_acc_flag == True:
save_path = saver.save(sess, os.path.join(LOG_DIR,'best_cls_acc_model'+'.ckpt'))
log_string("Model saved in file: %s" % save_path)
if best_mean_iou_flag == True:
save_path = saver.save(sess, os.path.join(LOG_DIR,'best_mean_iou_model'+'.ckpt'))
log_string("Model saved in file: %s" % save_path)
# Save the variables to disk.
if epoch >= 10 and epoch % 5 == 0:
save_path = saver.save(sess, os.path.join(LOG_DIR,'epoch_' + str(epoch)+'.ckpt'))
log_string("Model saved in file: %s" % save_path)
def train_one_epoch(sess, ops, train_writer):
""" ops: dict mapping from string to tf ops """
is_training = True
log_string(str(datetime.now()))
current_data, current_label, _ = provider.shuffle_data(train_data[:,0:NUM_POINT,:], train_label)
file_size = current_data.shape[0]
# num_batches = file_size // (FLAGS.num_gpu * BATCH_SIZE)
num_batches = file_size // (BATCH_SIZE)
total_correct = 0
total_seen = 0
loss_sum = 0
for batch_idx in range(num_batches):
if batch_idx % 100 == 0:
print('Current batch/total batch num: %d/%d'%(batch_idx,num_batches))
start_idx_0 = batch_idx * BATCH_SIZE
end_idx_0 = (batch_idx+1) * BATCH_SIZE
feed_dict = {ops['pointclouds_pl']: current_data[start_idx_0:end_idx_0, :, :],
ops['labels_pl']: current_label[start_idx_0:end_idx_0],
ops['is_training_pl']: is_training}
summary, step, _, loss_val, pred_val = sess.run([ops['merged'], ops['step'], ops['train_op'], ops['loss'], ops['pred']],
feed_dict=feed_dict)
train_writer.add_summary(summary, step)
pred_val = np.argmax(pred_val, 2)
correct = np.sum(pred_val == current_label[start_idx_0:end_idx_0])
total_correct += correct
total_seen += (BATCH_SIZE*NUM_POINT)
loss_sum += loss_val
log_string('mean loss: %f' % (loss_sum / float(num_batches)))
log_string('accuracy: %f' % (total_correct / float(total_seen)))
def eval_one_epoch(sess, ops, test_writer):
global BEST_MEAN_IOU
global BEST_ALL_ACC
global BEST_CLS_ACC
log_string('****Evaluation****')
is_training = False
gt_classes = [0 for _ in range(13)]
positive_classes = [0 for _ in range(13)]
true_positive_classes = [0 for _ in range(13)]
for room_path in TEST_ROOM_PATH_LIST:
current_data, current_label = indoor3d_util.room2blocks_wrapper_normalized(room_path, NUM_POINT)
current_data = current_data[:,0:NUM_POINT,:]
current_label = np.squeeze(current_label)
data_label = np.load(room_path)
data = data_label[:,0:6]
max_room_x = max(data[:,0])
max_room_y = max(data[:,1])
max_room_z = max(data[:,2])
file_size = current_data.shape[0]
num_batches = file_size // BATCH_SIZE
# print(file_size)
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = min((batch_idx+1) * BATCH_SIZE, file_size)
cur_batch_size = end_idx - start_idx
feed_dict = {ops['pointclouds_pl']: current_data[start_idx:end_idx, :, :],
ops['labels_pl']: current_label[start_idx:end_idx],
ops['is_training_pl']: is_training}
loss_val, pred_val = sess.run([ops['loss'], ops['pred']],
feed_dict=feed_dict)
pred_label = np.argmax(pred_val, 2)
for i in range(start_idx, end_idx):
for j in range(NUM_POINT):
gt_l = int(current_label[i, j])
pred_l = int(pred_label[i-start_idx, j])
gt_classes[gt_l] += 1
positive_classes[pred_l] += 1
true_positive_classes[gt_l] += int(gt_l==pred_l)
current_all_acc = (sum(true_positive_classes)/float(sum(positive_classes)))
log_string('overall accuracy: %f' % current_all_acc)
class_list = []
for i in range(13):
acc_class = true_positive_classes[i]/float(gt_classes[i])
class_list.append(acc_class)
current_cls_acc = (sum(class_list)/13.0)
log_string('avg class accuracy: %f' % current_cls_acc)
log_string ('IoU: ')
iou_list = []
for i in range(13):
iou = true_positive_classes[i]/float(gt_classes[i]+positive_classes[i]-true_positive_classes[i])
log_string('%f' % iou)
iou_list.append(iou)
current_mean_iou = (sum(iou_list)/13.0)
log_string('avg IoU %f' % current_mean_iou)
best_all_acc_flag, best_cls_acc_flag, best_mean_iou_flag = False, False, False
if current_all_acc > BEST_ALL_ACC:
BEST_ALL_ACC = current_all_acc
best_all_acc_flag = True
if current_cls_acc > BEST_CLS_ACC:
BEST_CLS_ACC = current_cls_acc
best_cls_acc_flag = True
if current_mean_iou > BEST_MEAN_IOU:
BEST_MEAN_IOU = current_mean_iou
best_mean_iou_flag = True
log_string('best_all_acc: %f' % BEST_ALL_ACC)
log_string('best_cls_acc: %f' % BEST_CLS_ACC)
log_string('best_mean_iou: %f' % BEST_MEAN_IOU)
return best_all_acc_flag, best_cls_acc_flag, best_mean_iou_flag
if __name__ == "__main__":
train()
LOG_FOUT.close()