forked from PreferredAI/cornac
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathctr_example_citeulike.py
42 lines (35 loc) · 1.65 KB
/
ctr_example_citeulike.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Example for Collaborative Topic Modeling"""
import cornac
from cornac.data import Reader
from cornac.datasets import citeulike
from cornac.eval_methods import RatioSplit
from cornac.data import TextModality
from cornac.data.text import BaseTokenizer
docs, item_ids = citeulike.load_text()
data = citeulike.load_data(reader=Reader(item_set=item_ids))
# build text modality
item_text_modality = TextModality(corpus=docs, ids=item_ids,
tokenizer=BaseTokenizer(sep=' ', stop_words='english'),
max_vocab=8000, max_doc_freq=0.5)
ratio_split = RatioSplit(data=data, test_size=0.2, exclude_unknowns=True,
item_text=item_text_modality, verbose=True, seed=123, rating_threshold=0.5)
ctr = cornac.models.CTR(k=50, max_iter=50, lambda_v=1)
rec_300 = cornac.metrics.Recall(k=300)
exp = cornac.Experiment(eval_method=ratio_split,
models=[ctr],
metrics=[rec_300])
exp.run()