forked from PreferredAI/cornac
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfm_example.py
47 lines (40 loc) · 1.49 KB
/
fm_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Example for Factorization Machines with MovieLens 100K dataset"""
import cornac
from cornac.datasets import movielens
from cornac.eval_methods import RatioSplit
from cornac.models import FM
feedback = movielens.load_feedback(variant="100K")
ratio_split = RatioSplit(
data=feedback,
test_size=0.1,
val_size=0.1,
exclude_unknowns=True,
verbose=True,
seed=42,
)
models = [
FM(k0=1, k1=1, k2=8, method="sgd", max_iter=100, seed=42, name="sgd"),
FM(k0=1, k1=1, k2=8, method="sgda", max_iter=100, seed=42, name="sgda"),
FM(k0=1, k1=1, k2=8, method="als", max_iter=100, seed=42, name="als"),
FM(k0=1, k1=1, k2=8, method="mcmc", max_iter=100, seed=42, name="mcmc"),
]
cornac.Experiment(
eval_method=ratio_split,
models=models,
metrics=[cornac.metrics.RMSE()],
user_based=False,
).run()