forked from thu-coai/EVA
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathstage1.py
1127 lines (944 loc) · 51.8 KB
/
stage1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Fix optimizer bug
import math
import torch
import torch.distributed as dist
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from collections import defaultdict
from deepspeed.runtime.zero.utils import _initialize_parameter_parallel_groups
from deepspeed.runtime.fp16.loss_scaler import LossScaler, DynamicLossScaler
from deepspeed.runtime.utils import get_grad_norm, CheckOverflow
from deepspeed.runtime.zero.config import ZERO_OPTIMIZATION_OPTIMIZER_STATES
from deepspeed.utils import logger, log_dist
def get_alignment_padding(flattened_lean_size, sub_partition_id, sub_partition_size):
sub_partition_high_limit = (sub_partition_id + 1) * sub_partition_size
if sub_partition_high_limit <= flattened_lean_size:
return 0
else:
return min(sub_partition_size, sub_partition_high_limit - flattened_lean_size)
def get_group_alignment_padding(tensor_list, sub_partition_size, sub_partition_count):
group_paddings = []
flattened_size = sum([tensor.numel() for tensor in tensor_list])
for i in range(sub_partition_count):
padding = get_alignment_padding(flattened_size, i, sub_partition_size)
group_paddings.append(padding)
return group_paddings
def flatten_dense_tensors_sub_partition_aligned(tensor_list,
dp,
max_elements_per_comm,
pg):
assert max_elements_per_comm >= dp, f"max_elements_per_comm {max_elements_per_comm} < dp {dp}"
num_elements = sum(t.numel() for t in tensor_list)
log_dist("Total number of elements in model: {}, max elements per com: {}".format(
num_elements,
max_elements_per_comm),
ranks=[0])
# Compute aligned partition size based on parameter count
aligned_param_partition_size = math.ceil(num_elements / dp)
# Compute aligned partition size based on communication size
aligned_comm_partition_size = int(max_elements_per_comm // dp)
if aligned_param_partition_size <= aligned_comm_partition_size:
sub_partition_count = 1
sub_partition_size = aligned_param_partition_size
else:
sub_partition_count = math.ceil(aligned_param_partition_size /
aligned_comm_partition_size)
sub_partition_size = aligned_comm_partition_size
# Compute required padding for alignment to dp and max_elements_per_comm
padding = (sub_partition_count * sub_partition_size * dp) - num_elements
log_dist(
f"sub_partition_count: {sub_partition_count}, sub_partition_size: {sub_partition_size}, padding: {padding}",
ranks=[0])
log_dist(
f"number of elements with padding: {num_elements} + {padding} = {num_elements + padding}",
ranks=[0])
if padding == 0:
aligned_tensor_list = tensor_list
else:
pad_tensor = torch.zeros(padding,
device=tensor_list[0].device,
dtype=tensor_list[0].dtype)
aligned_tensor_list = tensor_list + [pad_tensor]
flat_tensors = _flatten_dense_tensors(aligned_tensor_list)
return flat_tensors
def _single_range_check(current_index, start_index, end_index, tensor_size):
offset = 0
if (current_index >= start_index) and (current_index < end_index):
# Fully inside bounds
return True, offset
elif (start_index > current_index) and (start_index < (current_index + tensor_size)):
# Partially contained, compute offset
offset = start_index - current_index
return True, offset
else:
return False, offset
def _range_check(current_index, element_intervals, tensor_size):
results = []
for comm_idx, interval in enumerate(element_intervals):
start_index, end_index = interval
contained, offset = _single_range_check(current_index, start_index, end_index, tensor_size)
if contained:
results.append((contained, offset, comm_idx))
if len(results) == 0:
return [(False, 0, -1)]
return results
class FP16_DeepSpeedZeroOptimizer_Stage1(object):
"""
FP16_DeepSpeedZeroOptimizer_Stage1 designed to reduce the memory footprint
required for training large deep learning models.
For more details please see ZeRO: Memory Optimization Towards Training A Trillion Parameter Models
https://arxiv.org/abs/1910.02054
This version aligns with stage-1 in the paper above.
"""
def __init__(self,
init_optimizer,
static_loss_scale=1.0,
dynamic_loss_scale=False,
dynamic_loss_args=None,
verbose=True,
dp_process_group=None,
partition_size=None,
mpu=None,
all_gather_partitions=True,
allgather_size=500000000,
clip_grad=0.0,
max_elements_per_comm=5e8,
elastic_checkpoint=True):
if dp_process_group is not None and partition_size is not None:
raise ValueError("Cannot specify both dp_process_group "
"and partition size")
if dp_process_group is None:
dp_process_group = _initialize_parameter_parallel_groups(partition_size)
if not torch.cuda.is_available:
raise SystemError("Cannot use fp16 without CUDA.")
self.optimizer = init_optimizer
self.verbose = verbose
self.dp_process_group = dp_process_group
# TODO: automatically turn off if #params > some_limit
self.all_gather_partitions = all_gather_partitions
self.allgather_size = allgather_size
# self.max_elements_per_comm = max_elements_per_comm
# logger.info("max_elements_per_comm={}".format(max_elements_per_comm))
self.elastic_checkpoint = elastic_checkpoint
logger.info(f'ZeRO Elastic Checkpoint = {elastic_checkpoint}')
# param flattened by groups
self.fp16_groups = []
self.fp16_groups_flat = []
# Setup bookkeeping data structures depending on partitioning type
# parallel_sub_partitioned_fp16_groups[group-idx] -> [comm-ids] -> [rank-ids]
self.parallel_sub_partitioned_fp16_groups = []
# same underlying data as above but viewed as: [groups] -> [rank-ids] -> [comm-ids]
self.parallel_comm_sub_partitioned_fp16_groups = []
# 32-bit sub-partitions of the parallel partitioned parameters
# that this process will update
self.local_sub_partitions_of_fp32_groups = []
# param partition info
# parameters in each group that will not be updated by this process directly
self.params_not_local = []
# parameters that will be updated by this process directly
self.params_in_rank_sub_partitions = []
# parameter offsets for parameters in sub-partitions. Parameter
# boundaries may not align with sub-partition boundaries
# so we need to keep track of the offsets
self.params_in_rank_sub_partitions_offsets = []
# number of elements per sub-partition in each group
self.sub_partition_sizes = []
# number of communication intervals for each group
self.num_comm_intervals_per_group = []
local_rank = dist.get_rank(group=self.dp_process_group)
self.group_paddings = []
self.partition_count = dist.get_world_size(group=self.dp_process_group)
self.default_device = self.optimizer.param_groups[0]['params'][0].device
# max elems per param group
self.max_elems_per_comm = []
# loop to deal with groups
for i, param_group in enumerate(self.optimizer.param_groups):
# push this group to list before modify
self.fp16_groups.append(param_group['params'])
# calculate best max elements per comm based to minimize padding
self.max_elems_per_comm.append(
self.best_max_elems_per_comm(
num_elements=sum(t.numel() for t in self.fp16_groups[i]),
max_elements_per_comm=max_elements_per_comm,
dp=dist.get_world_size(group=self.dp_process_group)))
# flattens all tensors into single 1d tensor aligned with sub-partition size for later dividing
# RS: create aligned sub-partitions
flat_aligned_params = flatten_dense_tensors_sub_partition_aligned(
tensor_list=self.fp16_groups[i],
dp=dist.get_world_size(group=self.dp_process_group),
max_elements_per_comm=self.max_elems_per_comm[i],
pg=self.dp_process_group)
self.fp16_groups_flat.append(flat_aligned_params)
# TODO: I don't think this does anything?
# set model fp16 weight to slices of flattened buffer
updated_params = _unflatten_dense_tensors(self.fp16_groups_flat[i],
self.fp16_groups[i])
for p, q in zip(self.fp16_groups[i], updated_params):
p.data = q.data
# divide the flat weights into near equal partition equal to the data parallel degree
# each process will compute on a different part of the partition
# RS: split into two layer list -> [comm-id] -> [sub-partitions per rank]
comm_partitions, dp_sub_partitions, element_intervals, sub_partition_size, num_comm_intervals = \
self.get_data_parallel_sub_partitions(
tensor=self.fp16_groups_flat[i],
max_elements_per_comm=self.max_elems_per_comm[i],
world_size=dist.get_world_size(
group=self.dp_process_group),
dp_process_group=self.dp_process_group
)
self.parallel_comm_sub_partitioned_fp16_groups.append(
comm_partitions) # comm -> rank
self.parallel_sub_partitioned_fp16_groups.append(
dp_sub_partitions) # rank -> comm
self.sub_partition_sizes.append(sub_partition_size)
self.num_comm_intervals_per_group.append(num_comm_intervals)
# data_parallel_partitions = self.get_data_parallel_partitions(self.fp16_groups_flat[i])
# self.parallel_partitioned_fp16_groups.append(data_parallel_partitions)
# a partition of the fp32 master weights that will be updated by this process
# RS: store/detach/cast our local sub-partitions
local_sub_partitions = []
for sub_partition in self.parallel_sub_partitioned_fp16_groups[i][
local_rank]:
fp32_sub_partition = sub_partition.clone().float().detach()
fp32_sub_partition.requires_grad = True
local_sub_partitions.append(fp32_sub_partition)
self.local_sub_partitions_of_fp32_groups.append(local_sub_partitions)
# Compute sub_partition paddings
sub_partition_paddings = get_group_alignment_padding(
tensor_list=self.fp16_groups[i],
sub_partition_size=sub_partition_size,
sub_partition_count=num_comm_intervals * self.partition_count)
self.group_paddings.append(sub_partition_paddings)
# modify optimizer of have flat master weight
# self.single_partition_of_fp32_groups[i].requires_grad = True # keep this in case internal optimizer uses it
param_group['params'] = self.local_sub_partitions_of_fp32_groups[i]
# RS: divide up the sub-partitions and keep track of offsets for each param
# partition_size = len(self.fp16_groups_flat[i]) / dist.get_world_size(group=self.dp_process_group)
params_in_rank_sub_partition, params_in_rank_sub_partitions_offsets, params_not_local = self.get_all_sub_partition_info(
tensor_list=self.fp16_groups[i],
all_element_intervals=element_intervals,
local_rank=local_rank,
world_size=dist.get_world_size(group=self.dp_process_group)
)
self.params_in_rank_sub_partitions.append(params_in_rank_sub_partition)
self.params_not_local.append(params_not_local)
self.params_in_rank_sub_partitions_offsets.append(
params_in_rank_sub_partitions_offsets)
# we may have a way of fusing dynamic scale. Do not support for now
if dynamic_loss_scale:
if dynamic_loss_args is None:
self.loss_scaler = DynamicLossScaler()
else:
self.loss_scaler = DynamicLossScaler(**dynamic_loss_args)
self.dynamic_loss_scale = True
else:
self.dynamic_loss_scale = False
self.loss_scaler = LossScaler(scale=static_loss_scale)
self.cur_iter = 0
self.mpu = mpu
self.clip_grad = clip_grad
self.overflow = False
self.overflow_checker = CheckOverflow(self.fp16_groups,
mpu=self.mpu,
zero_reduce_scatter=True)
self._initialize_optimizer_states()
self.hack_first_step = True # CPM: HACK
def _initialize_optimizer_states(self):
for group_idx, group in enumerate(self.local_sub_partitions_of_fp32_groups):
for idx, sub_partition_param in enumerate(group):
sub_partition_grad = torch.zeros(int(
self.sub_partition_sizes[group_idx]),
dtype=sub_partition_param.dtype).cuda()
sub_partition_param.grad = sub_partition_grad
self.optimizer.step()
for group in self.local_sub_partitions_of_fp32_groups:
for idx, sub_partition_param in enumerate(group):
sub_partition_param.grad = None
@staticmethod
def best_max_elems_per_comm(num_elements, max_elements_per_comm, dp):
# if we use max-elems-per-comm as is, how many comm intervals will there be
max_comm_intervals = math.ceil(num_elements / max_elements_per_comm)
padding_for_max_comm = (max_elements_per_comm *
max_comm_intervals) - num_elements
# if we use 1 less comm interval how much extra comm padding would be required
min_comm_intervals = num_elements // max_elements_per_comm
if min_comm_intervals == 0:
log_dist(f'Using default max_elements_per_comm {max_elements_per_comm}',
ranks=[0])
return max_elements_per_comm
padding_for_min_comm = math.ceil(num_elements / (dp * min_comm_intervals))
# choose padding that uses least amount of overhead
if padding_for_max_comm > padding_for_min_comm:
new_max_elements_per_comm = padding_for_min_comm + max_elements_per_comm
log_dist(
f'Updating max_elements_per_comm from {max_elements_per_comm} -> {new_max_elements_per_comm}',
ranks=[0])
return new_max_elements_per_comm
else:
log_dist(f'Using default max_elements_per_comm {max_elements_per_comm}',
ranks=[0])
return max_elements_per_comm
@staticmethod
def get_data_parallel_sub_partitions(tensor,
max_elements_per_comm,
world_size,
dp_process_group=None):
total_num_elements = tensor.numel()
# if total elements is less than our max, revert to splitting into dp partitions
max_elements_per_comm = min(total_num_elements, max_elements_per_comm)
sub_partition_size = int(max_elements_per_comm // world_size)
# Ensure partition alignment was done correctly
num_sub_partitions = int(total_num_elements // sub_partition_size)
assert total_num_elements % sub_partition_size == 0, "{} % {} != 0".format(total_num_elements, sub_partition_size)
# Ensure comm interval alignment was done correctly.
num_comm_intervals = int(num_sub_partitions // world_size)
assert num_sub_partitions % world_size == 0, "{} % {} != 0".format(num_sub_partitions, world_size)
if not dist.is_initialized() or dist.get_rank(group=dp_process_group) == 0:
logger.info("**** partition info:")
logger.info("\t total_num_elements=%s", total_num_elements)
logger.info("\t world_size=%s", world_size)
logger.info("\t max_elements_per_comm=%s", max_elements_per_comm)
logger.info("\t sub_partition_size=%s", sub_partition_size)
logger.info("\t num_sub_partitions=%s", num_sub_partitions)
logger.info("\t num_comm_intervals=%s", num_comm_intervals)
logger.info("****")
# [comm_id] -> [rank]
comm_partitions = []
for _ in range(num_comm_intervals):
comm_partitions.append([])
start = 0
comm_id = 0
element_intervals = defaultdict(
list) # [rank] -> [(start,end), (start,end), ...]
for idx in range(num_sub_partitions):
rank_id = idx % world_size
sub_partition = tensor.narrow(0, start, sub_partition_size).detach()
element_intervals[rank_id].append((start, start + sub_partition_size))
comm_partitions[comm_id].append(sub_partition)
start = start + sub_partition_size
if rank_id == (world_size - 1):
comm_id += 1
# [rank] -> [comm_id]
sub_partitions = []
for _ in range(world_size):
sub_partitions.append([])
for comm_id, partitions in enumerate(comm_partitions):
for rank_id, partition in enumerate(partitions):
sub_partitions[rank_id].append(partition)
return comm_partitions, sub_partitions, element_intervals, sub_partition_size, num_comm_intervals
@staticmethod
def get_all_sub_partition_info(tensor_list,
all_element_intervals,
local_rank,
world_size):
params_not_local = []
# [rank] -> [comm-id] -> [param/offset]
params_in_rank_sub_partition = []
params_in_rank_sub_partitions_offsets = []
for rank in range(world_size):
params_in_local_sub_partition = []
local_sub_partition_offsets = []
comm_tensor_list = []
comm_offset_list = []
current_index = 0
prev_comm_idx = 0
for iii, tensor in enumerate(tensor_list):
tensor_size = tensor.numel()
#if local_rank == 0:
# # logger.info("rank={}, current_index={}, tensor_size={}, tensor-idx={}".format(rank,
# current_index, tensor_size, iii))
results_list = _range_check(current_index,
all_element_intervals[rank],
tensor_size)
for contained, offset, comm_idx in results_list:
#if local_rank == 0:
# logger.info("rank={}, contained={}, offset={}, comm_idx={}".format(rank, contained,
# offset, comm_idx))
if contained:
if prev_comm_idx != comm_idx:
params_in_local_sub_partition.append(comm_tensor_list)
comm_tensor_list = []
local_sub_partition_offsets.append(comm_offset_list)
comm_offset_list = []
comm_tensor_list.append(tensor)
comm_offset_list.append(offset)
prev_comm_idx = comm_idx
elif rank == local_rank:
params_not_local.append(tensor)
current_index = current_index + tensor_size
#assert len(comm_tensor_list) > 0
#assert len(comm_offset_list) > 0
params_in_local_sub_partition.append(comm_tensor_list)
local_sub_partition_offsets.append(comm_offset_list)
params_in_rank_sub_partition.append(params_in_local_sub_partition)
params_in_rank_sub_partitions_offsets.append(local_sub_partition_offsets)
return params_in_rank_sub_partition, params_in_rank_sub_partitions_offsets, params_not_local
@staticmethod
def get_flat_sub_partitions(comm_tensor_list,
comm_param_offsets,
sub_partition_size,
dtype,
default_device,
num_comm_intervals=None,
return_partition_params=False):
partition_params = []
final_param_offsets = []
flat_sub_partitions = []
for tensor_list, param_offsets in zip(comm_tensor_list, comm_param_offsets):
flat_tensor_list = []
current_size = 0
my_offsets = []
my_params = []
for i, tensor in enumerate(tensor_list):
if tensor.grad is None:
tensor.grad = torch.zeros(tensor.size(),
dtype=tensor.dtype,
device=tensor.device)
param = tensor
tensor = tensor.grad
num_elements = tensor.numel()
tensor_offset = 0
#we need to offset to get to the right element
if i == 0 and param_offsets[i] > 0:
tensor_offset = param_offsets[i]
num_elements = num_elements - tensor_offset
# We don't need all elements of the tensor if this tensor is
# larger than we have space for in our curr sub-partition
if num_elements > (sub_partition_size - current_size):
num_elements = sub_partition_size - current_size
#we need a narrow view of the tensor based on the tensor offset and number of elements that
#we need from this tensor
if tensor_offset > 0 or num_elements < tensor.numel():
flat_tensor_list.append(tensor.contiguous().view(-1).narrow(
0,
int(tensor_offset),
int(num_elements)).to(dtype))
else:
flat_tensor_list.append(tensor.to(dtype))
my_params.append(param)
#remember offset into partition and #elems for this tensor
my_offsets.append((current_size, num_elements))
current_size = current_size + num_elements
#this means its the last partition and does not align with the dp boundary. We need to pad before flattening
if current_size < sub_partition_size:
my_offsets.append((None, None))
my_params.append(None)
if len(tensor_list) == 0:
assert default_device != None
flat_tensor_list.append(
torch.zeros(int(sub_partition_size - current_size),
dtype=dtype,
device=default_device))
else:
flat_tensor_list.append(
torch.zeros(int(sub_partition_size - current_size),
dtype=dtype,
device=tensor_list[0].device))
partition_params.append(my_params) #flat_tensor_list)
final_param_offsets.append(my_offsets)
assert len(flat_tensor_list) == len(my_offsets), "{} {}".format(len(flat_tensor_list), len(my_offsets))
flat_sub_partitions.append(_flatten_dense_tensors(flat_tensor_list))
if num_comm_intervals is not None and len(
flat_sub_partitions) < num_comm_intervals:
# logger.info("padding w. sub partitions to ensure uniform communication")
device = flat_sub_partitions[0].device
for _ in range(num_comm_intervals - len(flat_sub_partitions)):
flat_sub_partitions.append(
torch.zeros(int(sub_partition_size),
dtype=dtype,
device=device))
partition_params.append([None])
final_param_offsets.append([(None, None)])
if return_partition_params:
assert len(flat_sub_partitions) == len(partition_params)
assert len(partition_params) == len(final_param_offsets), "{} {}".format(len(partition_params), len(final_param_offsets))
return flat_sub_partitions, partition_params, final_param_offsets
return flat_sub_partitions
def zero_grad(self, set_grads_to_None=True):
"""
Zero FP16 parameter grads.
"""
# FP32 grad should never exist.
# For speed, set model fp16 grad to None by default
for group in self.fp16_groups:
for p in group:
if set_grads_to_None:
p.grad = None
else:
if p.grad is not None:
p.grad.detach_()
p.grad.zero_()
def free_grad_in_param_list(self, param_list):
for p in param_list:
if isinstance(p, list):
for _p in p:
_p.grad = None
else:
p.grad = None
def reduce_scatter_gradients(self,
postscale_gradients,
gradient_predivide_factor,
gradient_average):
world_size = dist.get_world_size(group=self.dp_process_group)
local_rank = dist.get_rank(group=self.dp_process_group)
for i, group in enumerate(self.fp16_groups):
num_comm_intervals = self.num_comm_intervals_per_group[i]
all_sub_partitions = []
for rank in range(world_size):
# gsp is list of partitions indexed by comm_idx
grad_sub_partitions = self.get_flat_sub_partitions(
comm_tensor_list=self.params_in_rank_sub_partitions[i][rank],
comm_param_offsets=self.params_in_rank_sub_partitions_offsets[i]
[rank],
dtype=torch.half,
default_device=self.default_device,
sub_partition_size=self.sub_partition_sizes[i],
num_comm_intervals=self.num_comm_intervals_per_group[i])
all_sub_partitions.append(grad_sub_partitions)
assert len(grad_sub_partitions) == num_comm_intervals
local_comm_partitions = []
for comm_idx in range(num_comm_intervals):
single_comm_all_partitions = []
for rank in range(world_size):
single_comm_all_partitions.append(all_sub_partitions[rank][comm_idx])
if postscale_gradients:
if gradient_predivide_factor != 1.0:
for partition in single_comm_all_partitions:
partition.mul_(1. / gradient_predivide_factor)
dist.reduce_scatter(output=single_comm_all_partitions[local_rank],
input_list=single_comm_all_partitions,
group=self.dp_process_group)
if gradient_average:
# Only need to average our local grads in post scaling
if gradient_predivide_factor != world_size:
single_comm_all_partitions[local_rank].mul_(
gradient_predivide_factor / world_size)
else:
for partition in single_comm_all_partitions:
partition.div_(world_size)
dist.reduce_scatter(output=single_comm_all_partitions[local_rank],
input_list=single_comm_all_partitions,
group=self.dp_process_group)
def step(self, closure=None):
# First compute norm for all group so we know if there is overflow
self.overflow = self.overflow_checker.check()
prev_scale = self.loss_scale
self._update_scale(self.overflow)
if self.overflow:
self.zero_grad()
if self.verbose:
logger.info("[deepspeed] OVERFLOW! Skipping step. Attempted loss "
"scale: {}, reducing to {}".format(
prev_scale,
self.loss_scale))
return self.overflow
norm_groups = []
local_sub_partitions_grad_groups = []
partition_id = dist.get_rank(group=self.dp_process_group)
for i, group in enumerate(self.fp16_groups):
#TODO RS: update get grad norm to support sub partitions
norm_groups.append(get_grad_norm(group, mpu=self.mpu))
#RS: update free grads w.r.t. sub partitions
#free gradients for all the parameters that are not updated by this process
self.free_grad_in_param_list(self.params_not_local[i])
# create flat gradient partitions for parameters updated by this process
local_grad_sub_partitions = self.get_flat_sub_partitions(
comm_tensor_list=self.params_in_rank_sub_partitions[i][partition_id],
comm_param_offsets=self.params_in_rank_sub_partitions_offsets[i]
[partition_id],
sub_partition_size=self.sub_partition_sizes[i],
dtype=self.local_sub_partitions_of_fp32_groups[i][0].dtype,
num_comm_intervals=self.num_comm_intervals_per_group[i],
default_device=self.default_device)
#RS: update all our local params with sub-partition grads
for idx, sub_partition_param in enumerate(self.local_sub_partitions_of_fp32_groups[i]):
sub_partition_param.grad = local_grad_sub_partitions[idx]
#RS: update free grads for sub-partitions
#release all the gradient since we have already created a necessary copy in dp_grad_partition
self.free_grad_in_param_list(
self.params_in_rank_sub_partitions[i][partition_id])
local_sub_partitions_grad_groups.append(local_grad_sub_partitions)
#RS: update unscale/clip with sub partitions
self.unscale_and_clip_grads(local_sub_partitions_grad_groups, norm_groups)
self.optimizer.step()
#RS: clear our sub partition grads
#get rid of the fp32 gradients. Not needed anymore
for group in self.local_sub_partitions_of_fp32_groups:
for idx, sub_partition_param in enumerate(group):
sub_partition_param.grad = None
#group.grad = None
#NOTE RS: removed norm_groups outer loop from original code, i don't think it's needed
#RS: copy all sub-partition fp32 data to fp16 sub partitions
# copy fp32 param data to fp16 partitions w.r.t. our local rank
for fp16_all_sub_partitions, fp32_local_sub_partitions in zip(self.parallel_sub_partitioned_fp16_groups, self.local_sub_partitions_of_fp32_groups):
for local_sub_partition_param_fp16, local_sub_partition_param_fp32 in zip(fp16_all_sub_partitions[partition_id], fp32_local_sub_partitions):
if self.hack_first_step == True: # CPM: HACK
local_sub_partition_param_fp32.data.copy_(local_sub_partition_param_fp16.data) # CPM: HACK
else: # CPM: HACK
local_sub_partition_param_fp16.data.copy_(local_sub_partition_param_fp32.data) # CPM: HACK
self.hack_first_step = False # CPM: HACK
#RS: all_gather/broadcast sub-partitions in separate comm calls
#gather the updated weights from everyone
for fp16_all_sub_partitions in self.parallel_comm_sub_partitioned_fp16_groups:
for comm_id, sub_partitions in enumerate(fp16_all_sub_partitions):
dist.all_gather(sub_partitions,
sub_partitions[partition_id],
group=self.dp_process_group)
# TODO: we probably don't need this? just to be safe
for i in range(len(norm_groups)):
updated_params = _unflatten_dense_tensors(self.fp16_groups_flat[i],
self.fp16_groups[i])
for p, q in zip(self.fp16_groups[i], updated_params):
p.data = q.data
return self.overflow
def unscale_and_clip_grads(self, grad_groups_flat, norm_groups):
total_norm = 0.0
for norm in norm_groups:
total_norm += norm**2.0
total_norm = math.sqrt(total_norm)
# compute combined scale factor for this group
combined_scale = self.loss_scale
if self.clip_grad > 0.:
# norm is in fact norm*scale
clip = ((total_norm / self.loss_scale) + 1e-6) / self.clip_grad
if clip > 1:
combined_scale = clip * self.loss_scale
for grad in grad_groups_flat:
if isinstance(grad, list):
sub_partitions = grad
for g in sub_partitions:
g.data.mul_(1. / combined_scale)
else:
grad.data.mul_(1. / combined_scale)
def backward(self, loss, retain_graph=False):
self.loss_scaler.backward(loss.float(), retain_graph=retain_graph)
def _update_scale(self, has_overflow=False):
self.loss_scaler.update_scale(has_overflow)
# Promote state so it can be retrieved or set via "fp16_optimizer_instance.state"
def _get_state(self):
return self.optimizer.state
def _set_state(self, value):
self.optimizer.state = value
state = property(_get_state, _set_state)
# Promote param_groups so it can be retrieved or set via "fp16_optimizer_instance.param_groups"
# (for example, to adjust the learning rate)
def _get_param_groups(self):
return self.optimizer.param_groups
def _set_param_groups(self, value):
self.optimizer.param_groups = value
param_groups = property(_get_param_groups, _set_param_groups)
# Promote loss scale so it can be retrieved or set via "fp16_optimizer_instance.loss_scale"
def _get_loss_scale(self):
return self.loss_scaler.loss_scale
def _set_loss_scale(self, value):
self.loss_scaler.cur_scale = value
loss_scale = property(_get_loss_scale, _set_loss_scale)
cur_scale = property(_get_loss_scale, _set_loss_scale)
# Return communication interval paddings for local rank and group
def _get_local_group_paddings(self, group_index):
local_rank = dist.get_rank(group=self.dp_process_group)
sub_partition_indices = [
local_rank + (comm_idx * self.partition_count)
for comm_idx in range(self.num_comm_intervals_per_group[group_index])
]
group_paddings = [
self.group_paddings[group_index][sub_idx]
for sub_idx in sub_partition_indices
]
return group_paddings
# Return group tensor after removing paddings that are added for alignment to DP world size.
# This method works on the assumption that each group contains sub partitions.
def _get_groups_without_padding(self, groups_with_padding):
groups_without_padding = []
for group_index, group in enumerate(groups_with_padding):
group_paddings = self._get_local_group_paddings(group_index)
lean_sub_partitions = []
for sub_partition, padding in zip(group, group_paddings):
lean_length = sub_partition.numel() - padding
lean_sub_partitions.append(sub_partition[:lean_length])
groups_without_padding.append(lean_sub_partitions)
return groups_without_padding
# Return optimizer state after removing paddings that are added for alignment.
def _get_state_without_padding(self, state_with_padding, padding):
lean_state = {}
for key, value in state_with_padding.items():
if torch.is_tensor(value):
lean_length = value.numel() - padding
lean_state[key] = value[:lean_length]
else:
lean_state[key] = value
return lean_state
# Return base optimizer states.
# This method assumes that each param group contains a single flattened tensor.
def _get_base_optimizer_state(self):
optimizer_groups_state = []
for group_index, group in enumerate(self.optimizer.param_groups):
param_paddings = self._get_local_group_paddings(group_index)
group_lean_state = []
for param_idx, param in enumerate(group['params']):
lean_state = self._get_state_without_padding(self.optimizer.state[param],
param_paddings[param_idx])
group_lean_state.append(lean_state)
optimizer_groups_state.append(group_lean_state)
return optimizer_groups_state
def _rigid_state_dict(self):
"""
Returns a dict that can be loaded for continued training with same DP degree
"""
"""
Returns a dict containing the current state of this :class:`FP16_Optimizer` instance.
This dict contains attributes of :class:`FP16_Optimizer`, as well as the state_dict
of the contained Pytorch optimizer.
Example::
checkpoint = {}
checkpoint['model'] = model.state_dict()
checkpoint['optimizer'] = optimizer.state_dict()
torch.save(checkpoint, "saved.pth")
"""
state_dict = {}
state_dict['loss_scaler'] = self.loss_scaler
state_dict['dynamic_loss_scale'] = self.dynamic_loss_scale
state_dict['overflow'] = self.overflow
state_dict['base_optimizer_state'] = self.optimizer.state_dict()
state_dict[
'local_sub_partitions_of_fp32_groups'] = self.local_sub_partitions_of_fp32_groups
return state_dict
def _elastic_state_dict(self):
"""
Returns a dict that can be loaded for elastic training with different DP degree
"""
state_dict = {}
state_dict['loss_scaler'] = self.loss_scaler
state_dict['dynamic_loss_scale'] = self.dynamic_loss_scale
state_dict['overflow'] = self.overflow
state_dict['base_optimizer_state'] = self._get_base_optimizer_state()
state_dict['zero_stage'] = ZERO_OPTIMIZATION_OPTIMIZER_STATES
state_dict['partition_count'] = self.partition_count
state_dict['num_comm_intervals_per_group'] = self.num_comm_intervals_per_group
# Remove paddings for DP alignment to enable loading for other alignment values
fp32_groups_without_padding = self._get_groups_without_padding(
self.local_sub_partitions_of_fp32_groups)
state_dict['local_sub_partitions_of_fp32_groups'] = fp32_groups_without_padding
return state_dict
def state_dict(self):
"""
Returns a dict containing the current state of this :class:`FP16_Optimizer` instance.
This dict contains attributes of :class:`FP16_Optimizer`, as well as the state_dict
of the contained Pytorch optimizer.
Example::
checkpoint = {}
checkpoint['model'] = model.state_dict()
checkpoint['optimizer'] = optimizer.state_dict()
torch.save(checkpoint, "saved.pth")
"""
if self.elastic_checkpoint:
return self._elastic_state_dict()
return self._rigid_state_dict()
# Extract the fp32 weights of the current rank from checkpoint by merging the
# sub partitions of communication intervals across ranks.
# Let sub_i_j = sub partition of rank i and comm interval j
# For 2 ranks and 2 comm intervals, checkpoints (minus padding) are as follows:
# rank 0 = [sub_0_0, sub_0_1]
# rank 1 = [sub_1_0, sub_1_1]
# Merge to get [sub_0_0, sub_1_0, sub_0_1, sub_1_1] => original un-padded flattened tensor.
def _retrieve_group_sub_partition_weights(self,
all_partition_fp32_weights,
max_elems_per_comm):
num_partitions = len(all_partition_fp32_weights)
num_comm_intervals = len(all_partition_fp32_weights[0])
num_sub_partitions = num_partitions * num_comm_intervals
all_sub_partition_weights = [None] * num_sub_partitions
for rank, partition_weights in enumerate(all_partition_fp32_weights):
for comm_idx, sub_partition_weights in enumerate(partition_weights):
#all_sub_partition_weights.append(sub_partition_weights)
sub_partition_idx = (comm_idx * num_partitions) + rank
all_sub_partition_weights[sub_partition_idx] = sub_partition_weights
flat_merged_weights = flatten_dense_tensors_sub_partition_aligned(
tensor_list=all_sub_partition_weights,
dp=dist.get_world_size(group=self.dp_process_group),
max_elements_per_comm=max_elems_per_comm,
pg=self.dp_process_group)
comm_partitions, dp_sub_partitions, element_intervals, sub_partition_size, num_comm_intervals = \
self.get_data_parallel_sub_partitions(
tensor=flat_merged_weights,
max_elements_per_comm=max_elems_per_comm,
world_size=dist.get_world_size(group=self.dp_process_group),
dp_process_group=self.dp_process_group
)
partition_id = dist.get_rank(group=self.dp_process_group)
return [sub_partition for sub_partition in dp_sub_partitions[partition_id]]
# Restore base optimizer fp32 weights from checkpoint by:
# 1) Merging fp32 weights from checkpoints of all partitions
# 2) Extracting fp32 weights for current partition from merged weights
# 3) Using extracted weights to update base optimizer weights directly.
def _restore_from_fp32_weights(self, all_state_dict):
sub_partition_of_fp32_groups = []
for group_idx in range(len(self.local_sub_partitions_of_fp32_groups)):
all_partition_fp32_weights = [
sd['local_sub_partitions_of_fp32_groups'][group_idx]
for sd in all_state_dict
]
max_elems_per_comm = self.max_elems_per_comm[group_idx]
sub_partition_weights = self._retrieve_group_sub_partition_weights(
all_partition_fp32_weights,
max_elems_per_comm)
sub_partition_of_fp32_groups.append(sub_partition_weights)
for current_group, saved_group in zip(self.local_sub_partitions_of_fp32_groups, sub_partition_of_fp32_groups):
for current_sub_part, saved_sub_part in zip(current_group, saved_group):
current_sub_part.data.copy_(saved_sub_part.data)
# Extract optimizer state for current partition from merged states of all partitions
def _partition_base_optimizer_state(self,
state_key,
all_partition_states,
max_elems_per_comm):
if not torch.is_tensor(all_partition_states[0]):
return all_partition_states[0]
alignment = dist.get_world_size(group=self.dp_process_group)
flat_merged_partitions = flatten_dense_tensors_sub_partition_aligned(
tensor_list=all_partition_states,
dp=dist.get_world_size(group=self.dp_process_group),
max_elements_per_comm=max_elems_per_comm,
pg=self.dp_process_group)
comm_partitions, dp_sub_partitions, element_intervals, sub_partition_size, num_comm_intervals = \
self.get_data_parallel_sub_partitions(
tensor=flat_merged_partitions,
max_elements_per_comm=max_elems_per_comm,
world_size=dist.get_world_size(group=self.dp_process_group),
dp_process_group=self.dp_process_group
)
partition_id = dist.get_rank(group=self.dp_process_group)
return [sub_partition for sub_partition in dp_sub_partitions[partition_id]]
# Compute the optimizer state partitions for the group by
# 1) Merging state values across the previous partitioning.
# 2) Repartition state values for the new partitioning
# 3) Return state corresponding to local partition
def _retrieve_group_optimizer_states(self, all_partition_states, max_elems_per_comm):
merged_optimizer_states = {}
num_partitions = len(all_partition_states)
num_comm_intervals = len(all_partition_states[0])
num_sub_partitions = num_partitions * num_comm_intervals
for rank, partition_state in enumerate(all_partition_states):
for comm_idx, sub_partition_state in enumerate(partition_state):
for key, value in sub_partition_state.items():
if not key in merged_optimizer_states.keys():
merged_optimizer_states[key] = [None] * num_sub_partitions
sub_partition_idx = (comm_idx * num_partitions) + rank
merged_optimizer_states[key][sub_partition_idx] = value
group_optimizer_states = {}
for key, value in merged_optimizer_states.items():
group_optimizer_states[key] = self._partition_base_optimizer_state(
key,
value,