forked from mankasto/iLRG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
options.py
112 lines (103 loc) · 7.67 KB
/
options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
"""Parser options."""
import argparse
def options():
"""Construct the central argument parser, filled with useful defaults."""
parser = argparse.ArgumentParser(description='Instance-wise Batch Label Restoration and Image Reconstruction')
# Basic settings
parser.add_argument('--exp_name', default='Experiment', type=str)
parser.add_argument('--cpu', action='store_true', help='Use cpu')
parser.add_argument('--num_tries', default=50, type=int, help='Repetition times of an experiment')
parser.add_argument('--num_images', default=24, type=int,
help='How many images should be recovered from the given gradient / Restoration batchsize')
parser.add_argument('--seed', default=12, type=int, help='Random seed')
parser.add_argument('--alpha', default=1, type=float, help='Factor for scaling outputs')
parser.add_argument('--simplified', action='store_true',
help='Use simplified method, given class-wise label existences')
parser.add_argument('--compare', action='store_true',
help='Compare our method with others')
parser.add_argument('--estimate', action='store_true',
help='Use 1/n to estimate probabilities')
parser.add_argument('--analysis', action='store_true',
help='Error analysis about four approximations and recovered embeddings & probs, etc')
parser.add_argument('--ratio', default=0.00, type=float, help='Filter ratio to compute mean values')
# Data settings
parser.add_argument('--data_path', default='data', type=str)
parser.add_argument('--dataset', default='CIFAR100', type=str)
parser.add_argument('--split', default='train', type=str, help='Part of splitted dataset, default train')
parser.add_argument('--distribution', default='random', type=str, help='Data distribution of a training batch,'
'random, extreme, balanced, unique')
parser.add_argument('--start_id', default=0, type=int,
help='The beginning image id for collecting data with extreme and balanced distribution')
parser.add_argument('--num_classes', default=100, type=int)
parser.add_argument('--num_uniform_cls', default=32, type=int,
help='Num of classes for collecting data with balanced distribution')
parser.add_argument('--num_target_cls', default=5, type=int,
help='Num of classes for collecting data with random2 distribution')
parser.add_argument('--max_size', default=32, type=int,
help='Max batch size for ImageNet')
# Model settings
parser.add_argument('--model', default='lenet5', type=str, help='model name.')
parser.add_argument('--trained_model', action='store_true', help='Use a trained model.')
## Training settings
parser.add_argument('--iter_train', action='store_true',
help='Train model with iterations setting instead of epochs')
parser.add_argument('--iters', default=1000, type=int,
help='If using a trained model, how many iterations was it trained?')
parser.add_argument('--epochs', default=10, type=int,
help='If using a trained model, how many epochs was it trained?')
parser.add_argument('--batch_size', default=128, type=int,
help='Batchsize for training, so is validation')
parser.add_argument('--lr', default=0.1, type=float, help='Recommend 0.001 for adam series and 0.1 for sgd')
parser.add_argument('--optimizer', default='SGD', type=str, help='AdamW, SGD, linear')
parser.add_argument('--scheduler', default='linear', type=str, help='linear')
parser.add_argument('--weight_decay', default=5e-4, help='Usually 5e-4')
parser.add_argument('--warmup', action='store_true', help='Use warmup scheduler')
parser.add_argument('--epoch_interval', default=10, type=int,
help='How many epochs to validate or save models')
parser.add_argument('--iter_interval', default=100, type=int,
help='How many iterations to validate or save models')
parser.add_argument('--mid_save', action='store_true', help='Save middle trained models')
parser.add_argument('--model_path', default='models', type=str)
parser.add_argument('--dryrun', action='store_true', help='Run everything for just one step to test functionality')
## End training settings
parser.add_argument('--batchnorm', action='store_true', help='Use batchnorm for lenet5 model')
parser.add_argument('--dropout', action='store_true', help='Use dropout for vgg16 model')
parser.add_argument('--silu', action='store_true', help='Use silu activation, may occur negative values')
parser.add_argument('--leaky_relu', action='store_true',
help='Use leaky relu activation, may occur negative values')
parser.add_argument('--n_dim', default=300, type=int,
help='Dimension of embedding (the input of classification layer)')
parser.add_argument('--n_hidden', default=1, type=int,
help='Num of hidden layers')
# Defense settings
parser.add_argument('--defense', action='store_true', help='Defense against the attack')
parser.add_argument('--defense_method', default='dp', type=str,
help='dp(additive noise) or clip or sparse or perturb(soteria)')
parser.add_argument('--noise_std', default=0.001, type=float)
parser.add_argument('--clip_bound', default=4, type=int)
parser.add_argument('--sparse_ratio', default=10, type=int)
parser.add_argument('--prune_ratio', default=10, type=int)
# Rec images settings
parser.add_argument('--rec_img', action='store_true', help='Reconstruct images based on our attack, here IG')
parser.add_argument('--fix_labels', action='store_true', help='Fix labels')
parser.add_argument('--gt_labels', action='store_true', help='Fix labels with the gt')
parser.add_argument('--optim', default='ig', type=str, help='IG or DLG')
parser.add_argument('--restarts', default=1, type=int, help='How many restarts to run')
parser.add_argument('--cost_fn', default='sim', type=str, help='Choice of cost function')
parser.add_argument('--indices', default='def', type=str, help='Choice of indices from the parameter list')
parser.add_argument('--weights', default='equal', type=str, help='Weigh the parameter list differently')
parser.add_argument('--rec_lr', default=None, type=float, help='Learning rate for reconstruction')
parser.add_argument('--rec_optimizer', default='adam', type=str, help='Optimizer for reconstruction')
parser.add_argument('--signed', action='store_true', help='Use signed gradients, recommend true')
parser.add_argument('--boxed', action='store_true', help='Use box constraints, recommend true')
parser.add_argument('--scoring_choice', default='loss', type=str,
help='How to find the best image between all restarts')
parser.add_argument('--init', default='randn', type=str, help='Choice of image initialization')
parser.add_argument('--tv', default=1e-6, type=float, help='Weight of TV penalty')
parser.add_argument('--l2', default=1e-6, type=float, help='Weight of l2 norm')
parser.add_argument('--max_iterations', default=8000, type=int, help='Max iterations of reconstruction')
parser.add_argument('--loss_thresh', default=1e-4, type=float, help='Loss threshold for early stopping')
# Files and folders:
parser.add_argument('--save_image', action='store_true', help='Save the output to a file.')
# parser.add_argument('--image_dir', default='images/Experiment', type=str)
return parser