forked from albertoCrive/homographyTrackingDemo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIterativeOptimization.cpp
446 lines (366 loc) · 16.5 KB
/
IterativeOptimization.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
/*
Copyright 2014 Alberto Crivellaro, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland.
terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "IterativeOptimization.hpp"
#include "Utilities.hpp"
#include "Homography.hpp"
using namespace std;
using namespace cv;
AlignmentResults IterativeOptimization::SSDCalibration(const StructOfArray2di & pixelsOnTemplate, Mat &grayscaleFloatTemplate, Mat &grayscaleFloatImage, vector<float> & parameters, OptimizationParameters & optimizationParameters)
{
vector<Mat> templateDescriptorFields, imageDescriptorFields;
templateDescriptorFields.push_back(grayscaleFloatTemplate.clone());
imageDescriptorFields.push_back(grayscaleFloatImage.clone());
if (optimizationParameters.bNormalizeDescriptors)
{
NormalizeImage(templateDescriptorFields[0]);
NormalizeImage(imageDescriptorFields[0]);
}
return PyramidMultiLevelCalibration(pixelsOnTemplate, templateDescriptorFields, imageDescriptorFields, parameters, optimizationParameters);
}
AlignmentResults IterativeOptimization::DescriptorFieldsCalibration(const StructOfArray2di & pixelsOnTemplate, Mat &grayscaleFloatTemplate, Mat &grayscaleFloatImage, vector<float> ¶meters, OptimizationParameters & optimizationParameters)
{
vector<Mat> templateDescriptorFields, imageDescriptorFields;
ComputeGradientBasedDescriptorFields(grayscaleFloatTemplate, templateDescriptorFields);
ComputeGradientBasedDescriptorFields(grayscaleFloatImage, imageDescriptorFields);
if (optimizationParameters.bNormalizeDescriptors)
{
for(uint i=0; i < templateDescriptorFields.size(); ++i)
{
NormalizeImage(templateDescriptorFields[i]);
NormalizeImage(imageDescriptorFields[i]);
}
}
return PyramidMultiLevelCalibration(pixelsOnTemplate, templateDescriptorFields, imageDescriptorFields, parameters, optimizationParameters);
}
AlignmentResults IterativeOptimization::GradientModuleCalibration(const StructOfArray2di & pixelsOnTemplate, Mat &grayscaleFloatTemplate, Mat &grayscaleFloatImage, vector<float> ¶meters, OptimizationParameters & optimizationParameters)
{
vector<Mat> templateDescriptorFields, imageDescriptorFields;
ComputeGradientMagnitudeDescriptorFields(grayscaleFloatTemplate, templateDescriptorFields);
ComputeGradientMagnitudeDescriptorFields(grayscaleFloatImage, imageDescriptorFields);
if (optimizationParameters.bNormalizeDescriptors)
{
NormalizeImage(templateDescriptorFields[0]);
NormalizeImage(imageDescriptorFields[0]);
}
return PyramidMultiLevelCalibration(pixelsOnTemplate, templateDescriptorFields, imageDescriptorFields, parameters, optimizationParameters);
}
AlignmentResults IterativeOptimization::PyramidMultiLevelCalibration(const StructOfArray2di & pixelsOnTemplate, vector<Mat> &templateDescriptorFields, vector<Mat> &imageDescriptorFields, vector<float> & parameters, OptimizationParameters & optimizationParameters)
{
//TODO: information in pixelsOnTemplate is redundant, find a better way (compute it inside the function ?)
AlignmentResults alignmentResults, tempResults;
alignmentResults.nIter = 0;
if(optimizationParameters.pyramidSmoothingVariance.empty())
{
optimizationParameters.maxIterSingleLevel = max(optimizationParameters.maxIter, optimizationParameters.maxIterSingleLevel);
alignmentResults = GaussNewtonMinimization(pixelsOnTemplate, imageDescriptorFields, templateDescriptorFields, optimizationParameters, parameters);
return alignmentResults;
}
float originalPTol = optimizationParameters.pTol;
float originalResTol = optimizationParameters.resTol;
optimizationParameters.pTol = optimizationParameters.pTol * 10;
optimizationParameters.resTol = optimizationParameters.resTol * 10;
Mat smoothedImage, smoothedTemplate;
vector< vector<Mat> > smoothedImages( optimizationParameters.pyramidSmoothingVariance.size());
vector< vector<Mat> > smoothedTemplates( optimizationParameters.pyramidSmoothingVariance.size());
#pragma omp parallel for
for (int i=0;i<optimizationParameters.pyramidSmoothingVariance.size();i++)
{
smoothedImages[i] = SmoothDescriptorFields(optimizationParameters.pyramidSmoothingVariance[i], imageDescriptorFields);
smoothedTemplates[i] = SmoothDescriptorFields(optimizationParameters.pyramidSmoothingVariance[i], templateDescriptorFields);
}
for (int iLevel = 0;iLevel < optimizationParameters.pyramidSmoothingVariance.size();iLevel++)
{
if (iLevel == optimizationParameters.pyramidSmoothingVariance.size()-1)
{
optimizationParameters.maxIterSingleLevel = optimizationParameters.maxIter - alignmentResults.nIter;
optimizationParameters.pTol = originalPTol;
optimizationParameters.resTol = originalResTol;
}
#ifdef VERBOSE_OPT
cout<<"Start using pyramid level no."<< iLevel + 1<<endl;
#endif
tempResults = GaussNewtonMinimization(pixelsOnTemplate, smoothedImages[iLevel], smoothedTemplates[iLevel], optimizationParameters, parameters);
alignmentResults.poseIntermediateGuess.insert(alignmentResults.poseIntermediateGuess.end(), tempResults.poseIntermediateGuess.begin(), tempResults.poseIntermediateGuess.end());
alignmentResults.residualNorm.insert(alignmentResults.residualNorm.end(), tempResults.residualNorm.begin(), tempResults.residualNorm.end());
alignmentResults.nIter +=tempResults.nIter;
alignmentResults.exitFlag = tempResults.exitFlag;
#ifdef VERBOSE_OPT
cout<<"Ended using pyramid level no."<<iLevel+1<<" after "<< tempResults.nIter<<" iterations with local exit flag "<<tempResults.exitFlag<<endl;
#endif
if (alignmentResults.nIter > optimizationParameters.maxIter)
break;
if(alignmentResults.nIter > 10 && tempResults.exitFlag <= 0)
{
if (iLevel == optimizationParameters.pyramidSmoothingVariance.size()-1)
break;
else
iLevel = optimizationParameters.pyramidSmoothingVariance.size()-1;
}
}
return alignmentResults;
}
float IterativeOptimization::ComputeResidualNorm(vector<float> &errorImage)
{
float residualNorm(0.);
for(uint i(0); i<errorImage.size(); ++i)
residualNorm+=errorImage[i]*errorImage[i];
residualNorm/=errorImage.size();
return sqrt(residualNorm);
}
int IterativeOptimization::CheckConvergenceOptimization(float deltaPoseNorm, int nIter, float residualNormIncrement, OptimizationParameters optParam)
{
if (residualNormIncrement < optParam.resTol)
return -1;
else if (deltaPoseNorm < optParam.pTol)
return 0;
else if (nIter >= optParam.maxIterSingleLevel)
return 1;
return 1e6;
}
inline float estimatorL1L2(const float res)
{
//estimator
//http://research.microsoft.com/en-us/um/people/zhang/INRIA/Publis/Tutorial-Estim/node24.html
return res/sqrt((1+res*res/2));
}
inline float estimatorGerman(const float res)
{
//estimator
//http://research.microsoft.com/en-us/um/people/zhang/INRIA/Publis/Tutorial-Estim/node24.html
return res/((1+res*res)*(1+res*res));
}
inline float estimatorTukey(const float res)
{
//estimator
//http://research.microsoft.com/en-us/um/people/zhang/INRIA/Publis/Tutorial-Estim/node24.html
const float thrs = 1;
if (abs(res) > thrs)
{
//cout<<"0 virgule qqxchose "<<res<<endl;
return std::numeric_limits<float>::infinity();// // KMYI: Below needs to be removed and everything would be fine?
}
else
return res*(1-(res/thrs)*(res/thrs))*(1-(res/thrs)*(res/thrs));
}
enum class estimator_t {L2,L1L2,Turkey,German};
float estimator(const float res, const estimator_t e = estimator_t::L1L2)
{
switch(e)
{
case estimator_t::L2:
return res;//L2
case estimator_t::L1L2:
return estimatorL1L2(res);
case estimator_t::Turkey:
return estimatorTukey(res);
case estimator_t::German:
return estimatorGerman(res);
}
}
void IterativeOptimization::ComputeResiduals(const Mat &image, vector<float> & templatePixelIntensities, const StructOfArray2di & warpedPixels, vector<float> & errorImage)
{
#pragma omp parallel for
for(int iPoint = 0; iPoint < warpedPixels.size(); ++iPoint)
{
float res = 0;
if((warpedPixels).x[iPoint] >= 0 && (warpedPixels).x[iPoint] < image.cols && (warpedPixels).y[iPoint] >= 0 && (warpedPixels).y[iPoint] < image.rows)
{
res = templatePixelIntensities[iPoint] - ((float*)image.data)[image.cols * warpedPixels.y[iPoint] + warpedPixels.x[iPoint]];
errorImage[iPoint] = estimator(res);
}
}
}
void IterativeOptimization::ComputeWarpedPixels(const StructOfArray2di & pixelsOnTemplate, const vector<float>& parameters, StructOfArray2di & warpedPixels)
{
if(warpedPixels.size()!= pixelsOnTemplate.size())
warpedPixels.resize(pixelsOnTemplate.size());
#pragma omp parallel for
for(int iPoint = 0; iPoint < pixelsOnTemplate.size(); ++iPoint)
{
int x, y;
Homography::ComputeWarpedPixels(pixelsOnTemplate.x[iPoint],pixelsOnTemplate.y[iPoint], x,y, parameters);
warpedPixels.x[iPoint] = x;
warpedPixels.y[iPoint] = y;
}
}
void IterativeOptimization::AssembleSDImages(const vector<float>& parameters, const Mat &imageDx, const Mat &imageDy, const StructOfArray2di & warpedPixels, const vector<Eigen::Matrix<float, 2, N_PARAM> >& warpJacobians, Eigen::MatrixXf & sdImages)
{
// KMYI: OMP for parallization
const int stop = warpedPixels.size();
#pragma omp parallel for
for(int iPoint = 0; iPoint < stop; ++iPoint)
{
float imDx, imDy;//, val;
//val = 0;
if((warpedPixels).x[iPoint] >= 0 && (warpedPixels).x[iPoint] < imageDx.cols && (warpedPixels).y[iPoint] >= 0 && (warpedPixels).y[iPoint] < imageDx.rows)
{
// KMYI: let's try to calculate only once assuming same size for imageDx and iamge Dy
int warpedIdx = imageDx.cols * warpedPixels.y[iPoint] + warpedPixels.x[iPoint];
imDx = ((float*)imageDx.data)[warpedIdx];
imDy = ((float*)imageDy.data)[warpedIdx];
for(int iParam = 0; iParam < parameters.size(); ++iParam)
sdImages(iPoint, iParam) = imDx * (warpJacobians[iPoint])(0, iParam) + imDy * (warpJacobians[iPoint])(1, iParam);
}
else
for(int iParam = 0; iParam < parameters.size(); ++iParam)
sdImages(iPoint, iParam) = 0;
}
}
// namespace myMem
// {
// // parameters must contain the initial guess. It is updated during optimization
// uint nChannels;
// std::vector<std::vector<float> > templatePixelIntensities;
// vector<Mat> imageDx, imageDy;
// uint nParam;
// vector<Eigen::Matrix<float, 2, N_PARAM> > warpJacobians;
// //AlignmentResults alignmentResults;
// Eigen::MatrixXf sdImages;
// vector<float> errorImage;
// StructOfArray2di warpedPixels;
// Eigen::Matrix<float, N_PARAM, N_PARAM> hessian;
// Eigen::Matrix<float, N_PARAM, 1> rhs;
// Eigen::Matrix<float, N_PARAM, 1> deltaParam;
// bool init = 0;
// };
// void setInit(const int n)
// {
// myMem::init = n;
// }
// void initmyMem(const StructOfArray2di & pixelsOnTemplate, const vector<Mat> &images, const vector<float> & parameters)
// {
// //using namespace myMem;
// myMem::nChannels = images.size();
// myMem::templatePixelIntensities.resize(myMem::nChannels);
// myMem::imageDx.resize(myMem::nChannels);
// myMem::imageDy.resize(myMem::nChannels);
// myMem::nParam = parameters.size();
// myMem::warpJacobians.resize(pixelsOnTemplate.size());
// //myMem::alignmentResults.nIter = 0;
// //myMem::alignmentResults.exitFlag = 1e6;
// myMem::sdImages = Eigen::MatrixXf(pixelsOnTemplate.size(), myMem::nParam);
// myMem::errorImage = vector<float>(pixelsOnTemplate.size(), 0.0);
// myMem::init = 1;
// };
AlignmentResults LucasKanade::GaussNewtonMinimization(const StructOfArray2di & pixelsOnTemplate, const vector<Mat> & images, const vector<Mat> & templates, const OptimizationParameters optParam, vector<float> & parameters)
{
// for (int i=0;i<8;i++)
// cout<<parameters[i]<<"\t";
// cout << endl;
// #define USE_NAMESPACE 0//0 or 1
AlignmentResults alignmentResults;
alignmentResults.nIter = 0;
alignmentResults.exitFlag = 1e6;
// #if USE_NAMESPACE == 1
// using namespace myMem;
// if (init == 0)
// {
// printf("in init%u\n",uint(images.size()));
// initmyMem(pixelsOnTemplate,images,parameters);
// printf("done %u\n",nChannels);
// }
// //comment from here
// #else
//parameters must contain the initial guess. It is updated during optimization
uint nChannels(images.size());
vector<vector<float> > templatePixelIntensities(nChannels,vector<float>(pixelsOnTemplate.size()));
vector<Mat> imageDx(nChannels), imageDy(nChannels);
uint nParam = parameters.size();
vector<Eigen::Matrix<float, 2, N_PARAM> > warpJacobians(pixelsOnTemplate.size());
Eigen::MatrixXf sdImages(pixelsOnTemplate.size(), nParam);
vector<float> errorImage(pixelsOnTemplate.size(), 0.0);
StructOfArray2di warpedPixels;
Eigen::Matrix<float, N_PARAM, N_PARAM> hessian;
Eigen::Matrix<float, N_PARAM, 1> rhs;
Eigen::Matrix<float, N_PARAM, 1> deltaParam;
//#endif
//to here
// #if USE_NAMESPACE == 1
// //init val
// sdImages = Eigen::MatrixXf(pixelsOnTemplate.size(), nParam);
// fill(errorImage.begin(), errorImage.end(), 0);//same time as memset in -O3
// #endif
//vector <Eigen::MatrixXf> tmpHessian(images.size());
//vector <Eigen::MatrixXf> tmpsdImages(images.size(),sdImages);
//vector <vector<float> > tmperrorImage(images.size(),errorImage);
//#pragma omp parallel for
//#pragma unroll
for(int iChannel = 0; iChannel<nChannels; ++iChannel)
{
ComputeImageDerivatives(images[iChannel], imageDx[iChannel], imageDy[iChannel]);
for(int iPoint = 0; iPoint < pixelsOnTemplate.size(); ++iPoint)
{
int pos = templates[iChannel].cols* pixelsOnTemplate.y[iPoint] + pixelsOnTemplate.x[iPoint];
//if (pos < templates[iChannel].total())
templatePixelIntensities[iChannel][iPoint] = ((float*)templates[iChannel].data)[pos];
//else
// cout<<"tooo big "<<pos<<" / "<<templates[iChannel].size()<<endl;
}
}
while (alignmentResults.exitFlag == 1e6)
{
hessian.setZero();
rhs.setZero();
ComputeWarpedPixels(pixelsOnTemplate, parameters, warpedPixels);
#pragma omp parallel for
for (int iPoint = 0; iPoint < pixelsOnTemplate.size(); ++iPoint)
Homography::ComputeWarpJacobian(pixelsOnTemplate.x[iPoint], pixelsOnTemplate.y[iPoint], parameters, warpJacobians[iPoint]);
//#pragma omp parallel for //reduction(+ : hessian)
for(int iChannel = 0; iChannel<images.size(); ++iChannel)
{
AssembleSDImages(parameters, imageDx[iChannel], imageDy[iChannel], warpedPixels, warpJacobians, sdImages);
ComputeResiduals(images[iChannel], templatePixelIntensities[iChannel], warpedPixels, errorImage);// no need to put errorImage(outsidePixels) = 0, since corresponding row os sdImages is already 0.
//tmpsdImages[iChannel] = sdImages;
//tmperrorImage[iChannel] = errorImage;// no need to put errorImage(outsidePixels) = 0, since corresponding row os sdImages is already 0.
/////////
//hessian = hessian + sdImages.transpose() * sdImages;
hessian += sdImages.transpose() * sdImages;
//tmpHessian[iChannel] = tmpsdImages[iChannel].transpose() * tmpsdImages[iChannel];
//#pragma unroll
for (int i = 0; i<nParam; ++i)
{
for(uint iPoint(0); iPoint<pixelsOnTemplate.size(); ++iPoint)
{
float val = (errorImage[iPoint] == std::numeric_limits<float>::infinity() ? 0: errorImage[iPoint]);
//rhs(i,0) += tmpsdImages[iChannel](iPoint,i) * tmperrorImage[iChannel][iPoint];
rhs(i,0) += sdImages(iPoint,i) * val;
}
}
}
//for(int iChannel = 0; iChannel<images.size(); ++iChannel)
// hessian += tmpsdImages[iChannel].transpose() * tmpsdImages[iChannel];//tmpHessian[iChannel];
deltaParam = hessian.fullPivLu().solve(rhs);
//deltaParam = hessian.partialPivLu().solve(rhs);
//#pragma omp parallel for
//#pragma unroll
for(int i = 0; i<nParam; ++i)
parameters[i] += deltaParam(i,0);
alignmentResults.poseIntermediateGuess.push_back(parameters);
alignmentResults.residualNorm.push_back(ComputeResidualNorm(errorImage));
if(alignmentResults.nIter > 0)
alignmentResults.exitFlag = CheckConvergenceOptimization(deltaParam.norm(), alignmentResults.nIter, abs(alignmentResults.residualNorm[alignmentResults.nIter] - alignmentResults.residualNorm[alignmentResults.nIter-1]), optParam);
alignmentResults.nIter++;
#ifdef VERBOSE_OPT
cout<< "iteration n. " <<alignmentResults.nIter<<endl;
// cout<< " hessian: "<<endl<<hessian<<endl;
cout<<"parameters"<<endl;
for(uint i(0); i<nParam; ++i)
{
cout<<" ["<< i<<"]-> "<< parameters[i];
}
cout<<endl;
#endif
}
return alignmentResults;
}