forked from notaz/mesa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblorp_genX_exec.h
2576 lines (2238 loc) · 89.3 KB
/
blorp_genX_exec.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef BLORP_GENX_EXEC_H
#define BLORP_GENX_EXEC_H
#include "blorp_priv.h"
#include "dev/intel_device_info.h"
#include "common/intel_sample_positions.h"
#include "common/intel_l3_config.h"
#include "genxml/gen_macros.h"
/**
* This file provides the blorp pipeline setup and execution functionality.
* It defines the following function:
*
* static void
* blorp_exec(struct blorp_context *blorp, void *batch_data,
* const struct blorp_params *params);
*
* It is the job of whoever includes this header to wrap this in something
* to get an externally visible symbol.
*
* In order for the blorp_exec function to work, the driver must provide
* implementations of the following static helper functions.
*/
static void *
blorp_emit_dwords(struct blorp_batch *batch, unsigned n);
static uint64_t
blorp_emit_reloc(struct blorp_batch *batch,
void *location, struct blorp_address address, uint32_t delta);
static void
blorp_measure_start(struct blorp_batch *batch,
const struct blorp_params *params);
static void
blorp_measure_end(struct blorp_batch *batch,
const struct blorp_params *params);
static void *
blorp_alloc_dynamic_state(struct blorp_batch *batch,
uint32_t size,
uint32_t alignment,
uint32_t *offset);
UNUSED static void *
blorp_alloc_general_state(struct blorp_batch *batch,
uint32_t size,
uint32_t alignment,
uint32_t *offset);
static void *
blorp_alloc_vertex_buffer(struct blorp_batch *batch, uint32_t size,
struct blorp_address *addr);
static void
blorp_vf_invalidate_for_vb_48b_transitions(struct blorp_batch *batch,
const struct blorp_address *addrs,
uint32_t *sizes,
unsigned num_vbs);
UNUSED static struct blorp_address
blorp_get_workaround_address(struct blorp_batch *batch);
static void
blorp_alloc_binding_table(struct blorp_batch *batch, unsigned num_entries,
unsigned state_size, unsigned state_alignment,
uint32_t *bt_offset, uint32_t *surface_offsets,
void **surface_maps);
static uint32_t
blorp_binding_table_offset_to_pointer(struct blorp_batch *batch,
uint32_t offset);
static void
blorp_flush_range(struct blorp_batch *batch, void *start, size_t size);
static void
blorp_surface_reloc(struct blorp_batch *batch, uint32_t ss_offset,
struct blorp_address address, uint32_t delta);
static uint64_t
blorp_get_surface_address(struct blorp_batch *batch,
struct blorp_address address);
#if GFX_VER >= 7 && GFX_VER < 10
static struct blorp_address
blorp_get_surface_base_address(struct blorp_batch *batch);
#endif
#if GFX_VER >= 7
static const struct intel_l3_config *
blorp_get_l3_config(struct blorp_batch *batch);
# else
static void
blorp_emit_urb_config(struct blorp_batch *batch,
unsigned vs_entry_size, unsigned sf_entry_size);
#endif
static void
blorp_emit_pipeline(struct blorp_batch *batch,
const struct blorp_params *params);
/***** BEGIN blorp_exec implementation ******/
static uint64_t
_blorp_combine_address(struct blorp_batch *batch, void *location,
struct blorp_address address, uint32_t delta)
{
if (address.buffer == NULL) {
return address.offset + delta;
} else {
return blorp_emit_reloc(batch, location, address, delta);
}
}
#define __gen_address_type struct blorp_address
#define __gen_user_data struct blorp_batch
#define __gen_combine_address _blorp_combine_address
#include "genxml/genX_pack.h"
#define _blorp_cmd_length(cmd) cmd ## _length
#define _blorp_cmd_length_bias(cmd) cmd ## _length_bias
#define _blorp_cmd_header(cmd) cmd ## _header
#define _blorp_cmd_pack(cmd) cmd ## _pack
#define blorp_emit(batch, cmd, name) \
for (struct cmd name = { _blorp_cmd_header(cmd) }, \
*_dst = blorp_emit_dwords(batch, _blorp_cmd_length(cmd)); \
__builtin_expect(_dst != NULL, 1); \
_blorp_cmd_pack(cmd)(batch, (void *)_dst, &name), \
_dst = NULL)
#define blorp_emitn(batch, cmd, n, ...) ({ \
uint32_t *_dw = blorp_emit_dwords(batch, n); \
if (_dw) { \
struct cmd template = { \
_blorp_cmd_header(cmd), \
.DWordLength = n - _blorp_cmd_length_bias(cmd), \
__VA_ARGS__ \
}; \
_blorp_cmd_pack(cmd)(batch, _dw, &template); \
} \
_dw ? _dw + 1 : NULL; /* Array starts at dw[1] */ \
})
#define STRUCT_ZERO(S) ({ struct S t; memset(&t, 0, sizeof(t)); t; })
#define blorp_emit_dynamic(batch, state, name, align, offset) \
for (struct state name = STRUCT_ZERO(state), \
*_dst = blorp_alloc_dynamic_state(batch, \
_blorp_cmd_length(state) * 4, \
align, offset); \
__builtin_expect(_dst != NULL, 1); \
_blorp_cmd_pack(state)(batch, (void *)_dst, &name), \
blorp_flush_range(batch, _dst, _blorp_cmd_length(state) * 4), \
_dst = NULL)
/* 3DSTATE_URB
* 3DSTATE_URB_VS
* 3DSTATE_URB_HS
* 3DSTATE_URB_DS
* 3DSTATE_URB_GS
*
* Assign the entire URB to the VS. Even though the VS disabled, URB space
* is still needed because the clipper loads the VUE's from the URB. From
* the Sandybridge PRM, Volume 2, Part 1, Section 3DSTATE,
* Dword 1.15:0 "VS Number of URB Entries":
* This field is always used (even if VS Function Enable is DISABLED).
*
* The warning below appears in the PRM (Section 3DSTATE_URB), but we can
* safely ignore it because this batch contains only one draw call.
* Because of URB corruption caused by allocating a previous GS unit
* URB entry to the VS unit, software is required to send a “GS NULL
* Fence” (Send URB fence with VS URB size == 1 and GS URB size == 0)
* plus a dummy DRAW call before any case where VS will be taking over
* GS URB space.
*
* If the 3DSTATE_URB_VS is emitted, than the others must be also.
* From the Ivybridge PRM, Volume 2 Part 1, section 1.7.1 3DSTATE_URB_VS:
*
* 3DSTATE_URB_HS, 3DSTATE_URB_DS, and 3DSTATE_URB_GS must also be
* programmed in order for the programming of this state to be
* valid.
*/
static void
emit_urb_config(struct blorp_batch *batch,
const struct blorp_params *params,
UNUSED enum intel_urb_deref_block_size *deref_block_size)
{
/* Once vertex fetcher has written full VUE entries with complete
* header the space requirement is as follows per vertex (in bytes):
*
* Header Position Program constants
* +--------+------------+-------------------+
* | 16 | 16 | n x 16 |
* +--------+------------+-------------------+
*
* where 'n' stands for number of varying inputs expressed as vec4s.
*/
const unsigned num_varyings =
params->wm_prog_data ? params->wm_prog_data->num_varying_inputs : 0;
const unsigned total_needed = 16 + 16 + num_varyings * 16;
/* The URB size is expressed in units of 64 bytes (512 bits) */
const unsigned vs_entry_size = DIV_ROUND_UP(total_needed, 64);
ASSERTED const unsigned sf_entry_size =
params->sf_prog_data ? params->sf_prog_data->urb_entry_size : 0;
#if GFX_VER >= 7
assert(sf_entry_size == 0);
const unsigned entry_size[4] = { vs_entry_size, 1, 1, 1 };
unsigned entries[4], start[4];
bool constrained;
intel_get_urb_config(batch->blorp->compiler->devinfo,
blorp_get_l3_config(batch),
false, false, entry_size,
entries, start, deref_block_size, &constrained);
#if GFX_VERx10 == 70
/* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
*
* "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth stall
* needs to be sent just prior to any 3DSTATE_VS, 3DSTATE_URB_VS,
* 3DSTATE_CONSTANT_VS, 3DSTATE_BINDING_TABLE_POINTER_VS,
* 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one PIPE_CONTROL
* needs to be sent before any combination of VS associated 3DSTATE."
*/
blorp_emit(batch, GENX(PIPE_CONTROL), pc) {
pc.DepthStallEnable = true;
pc.PostSyncOperation = WriteImmediateData;
pc.Address = blorp_get_workaround_address(batch);
}
#endif
for (int i = 0; i <= MESA_SHADER_GEOMETRY; i++) {
blorp_emit(batch, GENX(3DSTATE_URB_VS), urb) {
urb._3DCommandSubOpcode += i;
urb.VSURBStartingAddress = start[i];
urb.VSURBEntryAllocationSize = entry_size[i] - 1;
urb.VSNumberofURBEntries = entries[i];
}
}
#else /* GFX_VER < 7 */
blorp_emit_urb_config(batch, vs_entry_size, sf_entry_size);
#endif
}
#if GFX_VER >= 7
static void
blorp_emit_memcpy(struct blorp_batch *batch,
struct blorp_address dst,
struct blorp_address src,
uint32_t size);
#endif
static void
blorp_emit_vertex_data(struct blorp_batch *batch,
const struct blorp_params *params,
struct blorp_address *addr,
uint32_t *size)
{
const float vertices[] = {
/* v0 */ (float)params->x1, (float)params->y1, params->z,
/* v1 */ (float)params->x0, (float)params->y1, params->z,
/* v2 */ (float)params->x0, (float)params->y0, params->z,
};
void *data = blorp_alloc_vertex_buffer(batch, sizeof(vertices), addr);
memcpy(data, vertices, sizeof(vertices));
*size = sizeof(vertices);
blorp_flush_range(batch, data, *size);
}
static void
blorp_emit_input_varying_data(struct blorp_batch *batch,
const struct blorp_params *params,
struct blorp_address *addr,
uint32_t *size)
{
const unsigned vec4_size_in_bytes = 4 * sizeof(float);
const unsigned max_num_varyings =
DIV_ROUND_UP(sizeof(params->wm_inputs), vec4_size_in_bytes);
const unsigned num_varyings =
params->wm_prog_data ? params->wm_prog_data->num_varying_inputs : 0;
*size = 16 + num_varyings * vec4_size_in_bytes;
const uint32_t *const inputs_src = (const uint32_t *)¶ms->wm_inputs;
void *data = blorp_alloc_vertex_buffer(batch, *size, addr);
uint32_t *inputs = data;
/* Copy in the VS inputs */
assert(sizeof(params->vs_inputs) == 16);
memcpy(inputs, ¶ms->vs_inputs, sizeof(params->vs_inputs));
inputs += 4;
if (params->wm_prog_data) {
/* Walk over the attribute slots, determine if the attribute is used by
* the program and when necessary copy the values from the input storage
* to the vertex data buffer.
*/
for (unsigned i = 0; i < max_num_varyings; i++) {
const gl_varying_slot attr = VARYING_SLOT_VAR0 + i;
const int input_index = params->wm_prog_data->urb_setup[attr];
if (input_index < 0)
continue;
memcpy(inputs, inputs_src + i * 4, vec4_size_in_bytes);
inputs += 4;
}
}
blorp_flush_range(batch, data, *size);
if (params->dst_clear_color_as_input) {
#if GFX_VER >= 7
/* In this case, the clear color isn't known statically and instead
* comes in through an indirect which we have to copy into the vertex
* buffer before we execute the 3DPRIMITIVE. We already copied the
* value of params->wm_inputs.clear_color into the vertex buffer in the
* loop above. Now we emit code to stomp it from the GPU with the
* actual clear color value.
*/
assert(num_varyings == 1);
/* The clear color is the first thing after the header */
struct blorp_address clear_color_input_addr = *addr;
clear_color_input_addr.offset += 16;
const unsigned clear_color_size =
GFX_VER < 10 ? batch->blorp->isl_dev->ss.clear_value_size : 4 * 4;
blorp_emit_memcpy(batch, clear_color_input_addr,
params->dst.clear_color_addr,
clear_color_size);
#else
unreachable("MCS partial resolve is not a thing on SNB and earlier");
#endif
}
}
static void
blorp_fill_vertex_buffer_state(struct GENX(VERTEX_BUFFER_STATE) *vb,
unsigned idx,
struct blorp_address addr, uint32_t size,
uint32_t stride)
{
vb[idx].VertexBufferIndex = idx;
vb[idx].BufferStartingAddress = addr;
vb[idx].BufferPitch = stride;
#if GFX_VER >= 6
vb[idx].MOCS = addr.mocs;
#endif
#if GFX_VER >= 7
vb[idx].AddressModifyEnable = true;
#endif
#if GFX_VER >= 8
vb[idx].BufferSize = size;
#elif GFX_VER >= 5
vb[idx].BufferAccessType = stride > 0 ? VERTEXDATA : INSTANCEDATA;
vb[idx].EndAddress = vb[idx].BufferStartingAddress;
vb[idx].EndAddress.offset += size - 1;
#elif GFX_VER == 4
vb[idx].BufferAccessType = stride > 0 ? VERTEXDATA : INSTANCEDATA;
vb[idx].MaxIndex = stride > 0 ? size / stride : 0;
#endif
#if GFX_VER >= 12
vb[idx].L3BypassDisable = true;
#endif
}
static void
blorp_emit_vertex_buffers(struct blorp_batch *batch,
const struct blorp_params *params)
{
struct GENX(VERTEX_BUFFER_STATE) vb[3];
uint32_t num_vbs = 2;
memset(vb, 0, sizeof(vb));
struct blorp_address addrs[2] = {};
uint32_t sizes[2];
blorp_emit_vertex_data(batch, params, &addrs[0], &sizes[0]);
blorp_fill_vertex_buffer_state(vb, 0, addrs[0], sizes[0],
3 * sizeof(float));
blorp_emit_input_varying_data(batch, params, &addrs[1], &sizes[1]);
blorp_fill_vertex_buffer_state(vb, 1, addrs[1], sizes[1], 0);
blorp_vf_invalidate_for_vb_48b_transitions(batch, addrs, sizes, num_vbs);
const unsigned num_dwords = 1 + num_vbs * GENX(VERTEX_BUFFER_STATE_length);
uint32_t *dw = blorp_emitn(batch, GENX(3DSTATE_VERTEX_BUFFERS), num_dwords);
if (!dw)
return;
for (unsigned i = 0; i < num_vbs; i++) {
GENX(VERTEX_BUFFER_STATE_pack)(batch, dw, &vb[i]);
dw += GENX(VERTEX_BUFFER_STATE_length);
}
}
static void
blorp_emit_vertex_elements(struct blorp_batch *batch,
const struct blorp_params *params)
{
const unsigned num_varyings =
params->wm_prog_data ? params->wm_prog_data->num_varying_inputs : 0;
bool need_ndc = batch->blorp->compiler->devinfo->ver <= 5;
const unsigned num_elements = 2 + need_ndc + num_varyings;
struct GENX(VERTEX_ELEMENT_STATE) ve[num_elements];
memset(ve, 0, num_elements * sizeof(*ve));
/* Setup VBO for the rectangle primitive..
*
* A rectangle primitive (3DPRIM_RECTLIST) consists of only three
* vertices. The vertices reside in screen space with DirectX
* coordinates (that is, (0, 0) is the upper left corner).
*
* v2 ------ implied
* | |
* | |
* v1 ----- v0
*
* Since the VS is disabled, the clipper loads each VUE directly from
* the URB. This is controlled by the 3DSTATE_VERTEX_BUFFERS and
* 3DSTATE_VERTEX_ELEMENTS packets below. The VUE contents are as follows:
* dw0: Reserved, MBZ.
* dw1: Render Target Array Index. Below vertex fetcher gets programmed
* to assign this with primitive instance identifier which will be
* used for layered clears. All other renders have only one instance
* and therefore the value will be effectively zero.
* dw2: Viewport Index. The HiZ op disables viewport mapping and
* scissoring, so set the dword to 0.
* dw3: Point Width: The HiZ op does not emit the POINTLIST primitive,
* so set the dword to 0.
* dw4: Vertex Position X.
* dw5: Vertex Position Y.
* dw6: Vertex Position Z.
* dw7: Vertex Position W.
*
* dw8: Flat vertex input 0
* dw9: Flat vertex input 1
* ...
* dwn: Flat vertex input n - 8
*
* For details, see the Sandybridge PRM, Volume 2, Part 1, Section 1.5.1
* "Vertex URB Entry (VUE) Formats".
*
* Only vertex position X and Y are going to be variable, Z is fixed to
* zero and W to one. Header words dw0,2,3 are zero. There is no need to
* include the fixed values in the vertex buffer. Vertex fetcher can be
* instructed to fill vertex elements with constant values of one and zero
* instead of reading them from the buffer.
* Flat inputs are program constants that are not interpolated. Moreover
* their values will be the same between vertices.
*
* See the vertex element setup below.
*/
unsigned slot = 0;
ve[slot] = (struct GENX(VERTEX_ELEMENT_STATE)) {
.VertexBufferIndex = 1,
.Valid = true,
.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT,
.SourceElementOffset = 0,
.Component0Control = VFCOMP_STORE_SRC,
/* From Gfx8 onwards hardware is no more instructed to overwrite
* components using an element specifier. Instead one has separate
* 3DSTATE_VF_SGVS (System Generated Value Setup) state packet for it.
*/
#if GFX_VER >= 8
.Component1Control = VFCOMP_STORE_0,
#elif GFX_VER >= 5
.Component1Control = VFCOMP_STORE_IID,
#else
.Component1Control = VFCOMP_STORE_0,
#endif
.Component2Control = VFCOMP_STORE_0,
.Component3Control = VFCOMP_STORE_0,
#if GFX_VER <= 5
.DestinationElementOffset = slot * 4,
#endif
};
slot++;
#if GFX_VER <= 5
/* On Iron Lake and earlier, a native device coordinates version of the
* position goes right after the normal VUE header and before position.
* Since w == 1 for all of our coordinates, this is just a copy of the
* position.
*/
ve[slot] = (struct GENX(VERTEX_ELEMENT_STATE)) {
.VertexBufferIndex = 0,
.Valid = true,
.SourceElementFormat = ISL_FORMAT_R32G32B32_FLOAT,
.SourceElementOffset = 0,
.Component0Control = VFCOMP_STORE_SRC,
.Component1Control = VFCOMP_STORE_SRC,
.Component2Control = VFCOMP_STORE_SRC,
.Component3Control = VFCOMP_STORE_1_FP,
.DestinationElementOffset = slot * 4,
};
slot++;
#endif
ve[slot] = (struct GENX(VERTEX_ELEMENT_STATE)) {
.VertexBufferIndex = 0,
.Valid = true,
.SourceElementFormat = ISL_FORMAT_R32G32B32_FLOAT,
.SourceElementOffset = 0,
.Component0Control = VFCOMP_STORE_SRC,
.Component1Control = VFCOMP_STORE_SRC,
.Component2Control = VFCOMP_STORE_SRC,
.Component3Control = VFCOMP_STORE_1_FP,
#if GFX_VER <= 5
.DestinationElementOffset = slot * 4,
#endif
};
slot++;
for (unsigned i = 0; i < num_varyings; ++i) {
ve[slot] = (struct GENX(VERTEX_ELEMENT_STATE)) {
.VertexBufferIndex = 1,
.Valid = true,
.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT,
.SourceElementOffset = 16 + i * 4 * sizeof(float),
.Component0Control = VFCOMP_STORE_SRC,
.Component1Control = VFCOMP_STORE_SRC,
.Component2Control = VFCOMP_STORE_SRC,
.Component3Control = VFCOMP_STORE_SRC,
#if GFX_VER <= 5
.DestinationElementOffset = slot * 4,
#endif
};
slot++;
}
const unsigned num_dwords =
1 + GENX(VERTEX_ELEMENT_STATE_length) * num_elements;
uint32_t *dw = blorp_emitn(batch, GENX(3DSTATE_VERTEX_ELEMENTS), num_dwords);
if (!dw)
return;
for (unsigned i = 0; i < num_elements; i++) {
GENX(VERTEX_ELEMENT_STATE_pack)(batch, dw, &ve[i]);
dw += GENX(VERTEX_ELEMENT_STATE_length);
}
blorp_emit(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
vf.StatisticsEnable = false;
}
#if GFX_VER >= 8
/* Overwrite Render Target Array Index (2nd dword) in the VUE header with
* primitive instance identifier. This is used for layered clears.
*/
blorp_emit(batch, GENX(3DSTATE_VF_SGVS), sgvs) {
sgvs.InstanceIDEnable = true;
sgvs.InstanceIDComponentNumber = COMP_1;
sgvs.InstanceIDElementOffset = 0;
}
for (unsigned i = 0; i < num_elements; i++) {
blorp_emit(batch, GENX(3DSTATE_VF_INSTANCING), vf) {
vf.VertexElementIndex = i;
vf.InstancingEnable = false;
}
}
blorp_emit(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
topo.PrimitiveTopologyType = _3DPRIM_RECTLIST;
}
#endif
}
/* 3DSTATE_VIEWPORT_STATE_POINTERS */
static uint32_t
blorp_emit_cc_viewport(struct blorp_batch *batch)
{
uint32_t cc_vp_offset;
blorp_emit_dynamic(batch, GENX(CC_VIEWPORT), vp, 32, &cc_vp_offset) {
vp.MinimumDepth = 0.0;
vp.MaximumDepth = 1.0;
}
#if GFX_VER >= 7
blorp_emit(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), vsp) {
vsp.CCViewportPointer = cc_vp_offset;
}
#elif GFX_VER == 6
blorp_emit(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vsp) {
vsp.CCViewportStateChange = true;
vsp.PointertoCC_VIEWPORT = cc_vp_offset;
}
#endif
return cc_vp_offset;
}
static uint32_t
blorp_emit_sampler_state(struct blorp_batch *batch)
{
uint32_t offset;
blorp_emit_dynamic(batch, GENX(SAMPLER_STATE), sampler, 32, &offset) {
sampler.MipModeFilter = MIPFILTER_NONE;
sampler.MagModeFilter = MAPFILTER_LINEAR;
sampler.MinModeFilter = MAPFILTER_LINEAR;
sampler.MinLOD = 0;
sampler.MaxLOD = 0;
sampler.TCXAddressControlMode = TCM_CLAMP;
sampler.TCYAddressControlMode = TCM_CLAMP;
sampler.TCZAddressControlMode = TCM_CLAMP;
sampler.MaximumAnisotropy = RATIO21;
sampler.RAddressMinFilterRoundingEnable = true;
sampler.RAddressMagFilterRoundingEnable = true;
sampler.VAddressMinFilterRoundingEnable = true;
sampler.VAddressMagFilterRoundingEnable = true;
sampler.UAddressMinFilterRoundingEnable = true;
sampler.UAddressMagFilterRoundingEnable = true;
#if GFX_VER > 6
sampler.NonnormalizedCoordinateEnable = true;
#endif
}
return offset;
}
UNUSED static uint32_t
blorp_emit_sampler_state_ps(struct blorp_batch *batch)
{
uint32_t offset = blorp_emit_sampler_state(batch);
#if GFX_VER >= 7
blorp_emit(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_PS), ssp) {
ssp.PointertoPSSamplerState = offset;
}
#elif GFX_VER == 6
blorp_emit(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS), ssp) {
ssp.VSSamplerStateChange = true;
ssp.GSSamplerStateChange = true;
ssp.PSSamplerStateChange = true;
ssp.PointertoPSSamplerState = offset;
}
#endif
return offset;
}
/* What follows is the code for setting up a "pipeline" on Sandy Bridge and
* later hardware. This file will be included by i965 for gfx4-5 as well, so
* this code is guarded by GFX_VER >= 6.
*/
#if GFX_VER >= 6
static void
blorp_emit_vs_config(struct blorp_batch *batch,
const struct blorp_params *params)
{
struct brw_vs_prog_data *vs_prog_data = params->vs_prog_data;
assert(!vs_prog_data || GFX_VER < 11 ||
vs_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8);
blorp_emit(batch, GENX(3DSTATE_VS), vs) {
if (vs_prog_data) {
vs.Enable = true;
vs.KernelStartPointer = params->vs_prog_kernel;
vs.DispatchGRFStartRegisterForURBData =
vs_prog_data->base.base.dispatch_grf_start_reg;
vs.VertexURBEntryReadLength =
vs_prog_data->base.urb_read_length;
vs.VertexURBEntryReadOffset = 0;
vs.MaximumNumberofThreads =
batch->blorp->isl_dev->info->max_vs_threads - 1;
#if GFX_VER >= 8
vs.SIMD8DispatchEnable =
vs_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8;
#endif
}
}
}
static void
blorp_emit_sf_config(struct blorp_batch *batch,
const struct blorp_params *params,
UNUSED enum intel_urb_deref_block_size urb_deref_block_size)
{
const struct brw_wm_prog_data *prog_data = params->wm_prog_data;
/* 3DSTATE_SF
*
* Disable ViewportTransformEnable (dw2.1)
*
* From the SandyBridge PRM, Volume 2, Part 1, Section 1.3, "3D
* Primitives Overview":
* RECTLIST: Viewport Mapping must be DISABLED (as is typical with the
* use of screen- space coordinates).
*
* A solid rectangle must be rendered, so set FrontFaceFillMode (dw2.4:3)
* and BackFaceFillMode (dw2.5:6) to SOLID(0).
*
* From the Sandy Bridge PRM, Volume 2, Part 1, Section
* 6.4.1.1 3DSTATE_SF, Field FrontFaceFillMode:
* SOLID: Any triangle or rectangle object found to be front-facing
* is rendered as a solid object. This setting is required when
* (rendering rectangle (RECTLIST) objects.
*/
#if GFX_VER >= 8
blorp_emit(batch, GENX(3DSTATE_SF), sf) {
#if GFX_VER >= 12
sf.DerefBlockSize = urb_deref_block_size;
#endif
}
blorp_emit(batch, GENX(3DSTATE_RASTER), raster) {
raster.CullMode = CULLMODE_NONE;
}
blorp_emit(batch, GENX(3DSTATE_SBE), sbe) {
sbe.VertexURBEntryReadOffset = 1;
if (prog_data) {
sbe.NumberofSFOutputAttributes = prog_data->num_varying_inputs;
sbe.VertexURBEntryReadLength = brw_blorp_get_urb_length(prog_data);
sbe.ConstantInterpolationEnable = prog_data->flat_inputs;
} else {
sbe.NumberofSFOutputAttributes = 0;
sbe.VertexURBEntryReadLength = 1;
}
sbe.ForceVertexURBEntryReadLength = true;
sbe.ForceVertexURBEntryReadOffset = true;
#if GFX_VER >= 9
for (unsigned i = 0; i < 32; i++)
sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;
#endif
}
#elif GFX_VER >= 7
blorp_emit(batch, GENX(3DSTATE_SF), sf) {
sf.FrontFaceFillMode = FILL_MODE_SOLID;
sf.BackFaceFillMode = FILL_MODE_SOLID;
sf.MultisampleRasterizationMode = params->num_samples > 1 ?
MSRASTMODE_ON_PATTERN : MSRASTMODE_OFF_PIXEL;
#if GFX_VER == 7
sf.DepthBufferSurfaceFormat = params->depth_format;
#endif
}
blorp_emit(batch, GENX(3DSTATE_SBE), sbe) {
sbe.VertexURBEntryReadOffset = 1;
if (prog_data) {
sbe.NumberofSFOutputAttributes = prog_data->num_varying_inputs;
sbe.VertexURBEntryReadLength = brw_blorp_get_urb_length(prog_data);
sbe.ConstantInterpolationEnable = prog_data->flat_inputs;
} else {
sbe.NumberofSFOutputAttributes = 0;
sbe.VertexURBEntryReadLength = 1;
}
}
#else /* GFX_VER <= 6 */
blorp_emit(batch, GENX(3DSTATE_SF), sf) {
sf.FrontFaceFillMode = FILL_MODE_SOLID;
sf.BackFaceFillMode = FILL_MODE_SOLID;
sf.MultisampleRasterizationMode = params->num_samples > 1 ?
MSRASTMODE_ON_PATTERN : MSRASTMODE_OFF_PIXEL;
sf.VertexURBEntryReadOffset = 1;
if (prog_data) {
sf.NumberofSFOutputAttributes = prog_data->num_varying_inputs;
sf.VertexURBEntryReadLength = brw_blorp_get_urb_length(prog_data);
sf.ConstantInterpolationEnable = prog_data->flat_inputs;
} else {
sf.NumberofSFOutputAttributes = 0;
sf.VertexURBEntryReadLength = 1;
}
}
#endif /* GFX_VER */
}
static void
blorp_emit_ps_config(struct blorp_batch *batch,
const struct blorp_params *params)
{
const struct brw_wm_prog_data *prog_data = params->wm_prog_data;
/* Even when thread dispatch is disabled, max threads (dw5.25:31) must be
* nonzero to prevent the GPU from hanging. While the documentation doesn't
* mention this explicitly, it notes that the valid range for the field is
* [1,39] = [2,40] threads, which excludes zero.
*
* To be safe (and to minimize extraneous code) we go ahead and fully
* configure the WM state whether or not there is a WM program.
*/
#if GFX_VER >= 8
blorp_emit(batch, GENX(3DSTATE_WM), wm);
blorp_emit(batch, GENX(3DSTATE_PS), ps) {
if (params->src.enabled) {
ps.SamplerCount = 1; /* Up to 4 samplers */
ps.BindingTableEntryCount = 2;
} else {
ps.BindingTableEntryCount = 1;
}
/* SAMPLER_STATE prefetching is broken on Gfx11 - Wa_1606682166 */
if (GFX_VER == 11)
ps.SamplerCount = 0;
if (prog_data) {
ps._8PixelDispatchEnable = prog_data->dispatch_8;
ps._16PixelDispatchEnable = prog_data->dispatch_16;
ps._32PixelDispatchEnable = prog_data->dispatch_32;
/* From the Sky Lake PRM 3DSTATE_PS::32 Pixel Dispatch Enable:
*
* "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16, SIMD32
* Dispatch must not be enabled for PER_PIXEL dispatch mode."
*
* Since 16x MSAA is first introduced on SKL, we don't need to apply
* the workaround on any older hardware.
*/
if (GFX_VER >= 9 && !prog_data->persample_dispatch &&
params->num_samples == 16) {
assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
ps._32PixelDispatchEnable = false;
}
ps.DispatchGRFStartRegisterForConstantSetupData0 =
brw_wm_prog_data_dispatch_grf_start_reg(prog_data, ps, 0);
ps.DispatchGRFStartRegisterForConstantSetupData1 =
brw_wm_prog_data_dispatch_grf_start_reg(prog_data, ps, 1);
ps.DispatchGRFStartRegisterForConstantSetupData2 =
brw_wm_prog_data_dispatch_grf_start_reg(prog_data, ps, 2);
ps.KernelStartPointer0 = params->wm_prog_kernel +
brw_wm_prog_data_prog_offset(prog_data, ps, 0);
ps.KernelStartPointer1 = params->wm_prog_kernel +
brw_wm_prog_data_prog_offset(prog_data, ps, 1);
ps.KernelStartPointer2 = params->wm_prog_kernel +
brw_wm_prog_data_prog_offset(prog_data, ps, 2);
}
/* 3DSTATE_PS expects the number of threads per PSD, which is always 64
* for pre Gfx11 and 128 for gfx11+; On gfx11+ If a programmed value is
* k, it implies 2(k+1) threads. It implicitly scales for different GT
* levels (which have some # of PSDs).
*
* In Gfx8 the format is U8-2 whereas in Gfx9+ it is U9-1.
*/
const struct intel_device_info *devinfo = batch->blorp->compiler->devinfo;
ps.MaximumNumberofThreadsPerPSD =
devinfo->max_threads_per_psd - (GFX_VER == 8 ? 2 : 1);
switch (params->fast_clear_op) {
case ISL_AUX_OP_NONE:
break;
#if GFX_VER >= 10
case ISL_AUX_OP_AMBIGUATE:
ps.RenderTargetFastClearEnable = true;
ps.RenderTargetResolveType = FAST_CLEAR_0;
break;
#endif
#if GFX_VER >= 9
case ISL_AUX_OP_PARTIAL_RESOLVE:
ps.RenderTargetResolveType = RESOLVE_PARTIAL;
break;
case ISL_AUX_OP_FULL_RESOLVE:
ps.RenderTargetResolveType = RESOLVE_FULL;
break;
#else
case ISL_AUX_OP_FULL_RESOLVE:
ps.RenderTargetResolveEnable = true;
break;
#endif
case ISL_AUX_OP_FAST_CLEAR:
ps.RenderTargetFastClearEnable = true;
break;
default:
unreachable("Invalid fast clear op");
}
}
blorp_emit(batch, GENX(3DSTATE_PS_EXTRA), psx) {
if (prog_data) {
psx.PixelShaderValid = true;
psx.AttributeEnable = prog_data->num_varying_inputs > 0;
psx.PixelShaderIsPerSample = prog_data->persample_dispatch;
psx.PixelShaderComputedDepthMode = prog_data->computed_depth_mode;
#if GFX_VER >= 9
psx.PixelShaderComputesStencil = prog_data->computed_stencil;
#endif
}
if (params->src.enabled)
psx.PixelShaderKillsPixel = true;
}
#elif GFX_VER >= 7
blorp_emit(batch, GENX(3DSTATE_WM), wm) {
switch (params->hiz_op) {
case ISL_AUX_OP_FAST_CLEAR:
wm.DepthBufferClear = true;
break;
case ISL_AUX_OP_FULL_RESOLVE:
wm.DepthBufferResolveEnable = true;
break;
case ISL_AUX_OP_AMBIGUATE:
wm.HierarchicalDepthBufferResolveEnable = true;
break;
case ISL_AUX_OP_NONE:
break;
default:
unreachable("not reached");
}
if (prog_data) {
wm.ThreadDispatchEnable = true;
wm.PixelShaderComputedDepthMode = prog_data->computed_depth_mode;
}
if (params->src.enabled)
wm.PixelShaderKillsPixel = true;
if (params->num_samples > 1) {
wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
wm.MultisampleDispatchMode =
(prog_data && prog_data->persample_dispatch) ?
MSDISPMODE_PERSAMPLE : MSDISPMODE_PERPIXEL;
} else {
wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
}
}
blorp_emit(batch, GENX(3DSTATE_PS), ps) {
ps.MaximumNumberofThreads =
batch->blorp->isl_dev->info->max_wm_threads - 1;
#if GFX_VERx10 == 75
ps.SampleMask = 1;
#endif
if (prog_data) {
ps._8PixelDispatchEnable = prog_data->dispatch_8;
ps._16PixelDispatchEnable = prog_data->dispatch_16;
ps._32PixelDispatchEnable = prog_data->dispatch_32;
ps.DispatchGRFStartRegisterForConstantSetupData0 =
brw_wm_prog_data_dispatch_grf_start_reg(prog_data, ps, 0);
ps.DispatchGRFStartRegisterForConstantSetupData1 =
brw_wm_prog_data_dispatch_grf_start_reg(prog_data, ps, 1);
ps.DispatchGRFStartRegisterForConstantSetupData2 =