forked from notaz/mesa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbrw_fs.cpp
7947 lines (6851 loc) · 267 KB
/
brw_fs.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/** @file brw_fs.cpp
*
* This file drives the GLSL IR -> LIR translation, contains the
* optimizations on the LIR, and drives the generation of native code
* from the LIR.
*/
#include "main/macros.h"
#include "brw_eu.h"
#include "brw_fs.h"
#include "brw_fs_live_variables.h"
#include "brw_nir.h"
#include "brw_vec4_gs_visitor.h"
#include "brw_cfg.h"
#include "brw_dead_control_flow.h"
#include "brw_private.h"
#include "dev/intel_debug.h"
#include "compiler/glsl_types.h"
#include "compiler/nir/nir_builder.h"
#include "program/prog_parameter.h"
#include "util/u_math.h"
using namespace brw;
static unsigned get_lowered_simd_width(const struct brw_compiler *compiler,
const fs_inst *inst);
void
fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
const fs_reg *src, unsigned sources)
{
memset((void*)this, 0, sizeof(*this));
this->src = new fs_reg[MAX2(sources, 3)];
for (unsigned i = 0; i < sources; i++)
this->src[i] = src[i];
this->opcode = opcode;
this->dst = dst;
this->sources = sources;
this->exec_size = exec_size;
this->base_mrf = -1;
assert(dst.file != IMM && dst.file != UNIFORM);
assert(this->exec_size != 0);
this->conditional_mod = BRW_CONDITIONAL_NONE;
/* This will be the case for almost all instructions. */
switch (dst.file) {
case VGRF:
case ARF:
case FIXED_GRF:
case MRF:
case ATTR:
this->size_written = dst.component_size(exec_size);
break;
case BAD_FILE:
this->size_written = 0;
break;
case IMM:
case UNIFORM:
unreachable("Invalid destination register file");
}
this->writes_accumulator = false;
}
fs_inst::fs_inst()
{
init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
}
fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
{
init(opcode, exec_size, reg_undef, NULL, 0);
}
fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
{
init(opcode, exec_size, dst, NULL, 0);
}
fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
const fs_reg &src0)
{
const fs_reg src[1] = { src0 };
init(opcode, exec_size, dst, src, 1);
}
fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
const fs_reg &src0, const fs_reg &src1)
{
const fs_reg src[2] = { src0, src1 };
init(opcode, exec_size, dst, src, 2);
}
fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
{
const fs_reg src[3] = { src0, src1, src2 };
init(opcode, exec_size, dst, src, 3);
}
fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
const fs_reg src[], unsigned sources)
{
init(opcode, exec_width, dst, src, sources);
}
fs_inst::fs_inst(const fs_inst &that)
{
memcpy((void*)this, &that, sizeof(that));
this->src = new fs_reg[MAX2(that.sources, 3)];
for (unsigned i = 0; i < that.sources; i++)
this->src[i] = that.src[i];
}
fs_inst::~fs_inst()
{
delete[] this->src;
}
void
fs_inst::resize_sources(uint8_t num_sources)
{
if (this->sources != num_sources) {
fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
src[i] = this->src[i];
delete[] this->src;
this->src = src;
this->sources = num_sources;
}
}
void
fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
const fs_reg &dst,
const fs_reg &surf_index,
const fs_reg &varying_offset,
uint32_t const_offset,
uint8_t alignment)
{
/* We have our constant surface use a pitch of 4 bytes, so our index can
* be any component of a vector, and then we load 4 contiguous
* components starting from that.
*
* We break down the const_offset to a portion added to the variable offset
* and a portion done using fs_reg::offset, which means that if you have
* GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
* we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
* later notice that those loads are all the same and eliminate the
* redundant ones.
*/
fs_reg vec4_offset = vgrf(glsl_type::uint_type);
bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
/* The pull load message will load a vec4 (16 bytes). If we are loading
* a double this means we are only loading 2 elements worth of data.
* We also want to use a 32-bit data type for the dst of the load operation
* so other parts of the driver don't get confused about the size of the
* result.
*/
fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
vec4_result, surf_index, vec4_offset,
brw_imm_ud(alignment));
inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
shuffle_from_32bit_read(bld, dst, vec4_result,
(const_offset & 0xf) / type_sz(dst.type), 1);
}
/**
* A helper for MOV generation for fixing up broken hardware SEND dependency
* handling.
*/
void
fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
{
/* The caller always wants uncompressed to emit the minimal extra
* dependencies, and to avoid having to deal with aligning its regs to 2.
*/
const fs_builder ubld = bld.annotate("send dependency resolve")
.quarter(0);
ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
}
bool
fs_inst::is_send_from_grf() const
{
switch (opcode) {
case SHADER_OPCODE_SEND:
case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
case SHADER_OPCODE_INTERLOCK:
case SHADER_OPCODE_MEMORY_FENCE:
case SHADER_OPCODE_BARRIER:
return true;
case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
return src[1].file == VGRF;
case FS_OPCODE_FB_WRITE:
case FS_OPCODE_FB_READ:
return src[0].file == VGRF;
default:
if (is_tex())
return src[0].file == VGRF;
return false;
}
}
bool
fs_inst::is_control_source(unsigned arg) const
{
switch (opcode) {
case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GFX7:
case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GFX4:
return arg == 0;
case SHADER_OPCODE_BROADCAST:
case SHADER_OPCODE_SHUFFLE:
case SHADER_OPCODE_QUAD_SWIZZLE:
case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
case SHADER_OPCODE_GET_BUFFER_SIZE:
return arg == 1;
case SHADER_OPCODE_MOV_INDIRECT:
case SHADER_OPCODE_CLUSTER_BROADCAST:
case SHADER_OPCODE_TEX:
case FS_OPCODE_TXB:
case SHADER_OPCODE_TXD:
case SHADER_OPCODE_TXF:
case SHADER_OPCODE_TXF_LZ:
case SHADER_OPCODE_TXF_CMS:
case SHADER_OPCODE_TXF_CMS_W:
case SHADER_OPCODE_TXF_UMS:
case SHADER_OPCODE_TXF_MCS:
case SHADER_OPCODE_TXL:
case SHADER_OPCODE_TXL_LZ:
case SHADER_OPCODE_TXS:
case SHADER_OPCODE_LOD:
case SHADER_OPCODE_TG4:
case SHADER_OPCODE_TG4_OFFSET:
case SHADER_OPCODE_SAMPLEINFO:
return arg == 1 || arg == 2;
case SHADER_OPCODE_SEND:
return arg == 0 || arg == 1;
default:
return false;
}
}
bool
fs_inst::is_payload(unsigned arg) const
{
switch (opcode) {
case FS_OPCODE_FB_WRITE:
case FS_OPCODE_FB_READ:
case VEC4_OPCODE_UNTYPED_ATOMIC:
case VEC4_OPCODE_UNTYPED_SURFACE_READ:
case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
case SHADER_OPCODE_INTERLOCK:
case SHADER_OPCODE_MEMORY_FENCE:
case SHADER_OPCODE_BARRIER:
return arg == 0;
case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GFX7:
return arg == 1;
case SHADER_OPCODE_SEND:
return arg == 2 || arg == 3;
default:
if (is_tex())
return arg == 0;
else
return false;
}
}
/**
* Returns true if this instruction's sources and destinations cannot
* safely be the same register.
*
* In most cases, a register can be written over safely by the same
* instruction that is its last use. For a single instruction, the
* sources are dereferenced before writing of the destination starts
* (naturally).
*
* However, there are a few cases where this can be problematic:
*
* - Virtual opcodes that translate to multiple instructions in the
* code generator: if src == dst and one instruction writes the
* destination before a later instruction reads the source, then
* src will have been clobbered.
*
* - SIMD16 compressed instructions with certain regioning (see below).
*
* The register allocator uses this information to set up conflicts between
* GRF sources and the destination.
*/
bool
fs_inst::has_source_and_destination_hazard() const
{
switch (opcode) {
case FS_OPCODE_PACK_HALF_2x16_SPLIT:
/* Multiple partial writes to the destination */
return true;
case SHADER_OPCODE_SHUFFLE:
/* This instruction returns an arbitrary channel from the source and
* gets split into smaller instructions in the generator. It's possible
* that one of the instructions will read from a channel corresponding
* to an earlier instruction.
*/
case SHADER_OPCODE_SEL_EXEC:
/* This is implemented as
*
* mov(16) g4<1>D 0D { align1 WE_all 1H };
* mov(16) g4<1>D g5<8,8,1>D { align1 1H }
*
* Because the source is only read in the second instruction, the first
* may stomp all over it.
*/
return true;
case SHADER_OPCODE_QUAD_SWIZZLE:
switch (src[1].ud) {
case BRW_SWIZZLE_XXXX:
case BRW_SWIZZLE_YYYY:
case BRW_SWIZZLE_ZZZZ:
case BRW_SWIZZLE_WWWW:
case BRW_SWIZZLE_XXZZ:
case BRW_SWIZZLE_YYWW:
case BRW_SWIZZLE_XYXY:
case BRW_SWIZZLE_ZWZW:
/* These can be implemented as a single Align1 region on all
* platforms, so there's never a hazard between source and
* destination. C.f. fs_generator::generate_quad_swizzle().
*/
return false;
default:
return !is_uniform(src[0]);
}
default:
/* The SIMD16 compressed instruction
*
* add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
*
* is actually decoded in hardware as:
*
* add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
* add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
*
* Which is safe. However, if we have uniform accesses
* happening, we get into trouble:
*
* add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
* add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
*
* Now our destination for the first instruction overwrote the
* second instruction's src0, and we get garbage for those 8
* pixels. There's a similar issue for the pre-gfx6
* pixel_x/pixel_y, which are registers of 16-bit values and thus
* would get stomped by the first decode as well.
*/
if (exec_size == 16) {
for (int i = 0; i < sources; i++) {
if (src[i].file == VGRF && (src[i].stride == 0 ||
src[i].type == BRW_REGISTER_TYPE_UW ||
src[i].type == BRW_REGISTER_TYPE_W ||
src[i].type == BRW_REGISTER_TYPE_UB ||
src[i].type == BRW_REGISTER_TYPE_B)) {
return true;
}
}
}
return false;
}
}
bool
fs_inst::can_do_source_mods(const struct intel_device_info *devinfo) const
{
if (devinfo->ver == 6 && is_math())
return false;
if (is_send_from_grf())
return false;
/* From Wa_1604601757:
*
* "When multiplying a DW and any lower precision integer, source modifier
* is not supported."
*/
if (devinfo->ver >= 12 && (opcode == BRW_OPCODE_MUL ||
opcode == BRW_OPCODE_MAD)) {
const brw_reg_type exec_type = get_exec_type(this);
const unsigned min_type_sz = opcode == BRW_OPCODE_MAD ?
MIN2(type_sz(src[1].type), type_sz(src[2].type)) :
MIN2(type_sz(src[0].type), type_sz(src[1].type));
if (brw_reg_type_is_integer(exec_type) &&
type_sz(exec_type) >= 4 &&
type_sz(exec_type) != min_type_sz)
return false;
}
if (!backend_instruction::can_do_source_mods())
return false;
return true;
}
bool
fs_inst::can_do_cmod()
{
if (!backend_instruction::can_do_cmod())
return false;
/* The accumulator result appears to get used for the conditional modifier
* generation. When negating a UD value, there is a 33rd bit generated for
* the sign in the accumulator value, so now you can't check, for example,
* equality with a 32-bit value. See piglit fs-op-neg-uvec4.
*/
for (unsigned i = 0; i < sources; i++) {
if (brw_reg_type_is_unsigned_integer(src[i].type) && src[i].negate)
return false;
}
return true;
}
bool
fs_inst::can_change_types() const
{
return dst.type == src[0].type &&
!src[0].abs && !src[0].negate && !saturate &&
(opcode == BRW_OPCODE_MOV ||
(opcode == BRW_OPCODE_SEL &&
dst.type == src[1].type &&
predicate != BRW_PREDICATE_NONE &&
!src[1].abs && !src[1].negate));
}
void
fs_reg::init()
{
memset((void*)this, 0, sizeof(*this));
type = BRW_REGISTER_TYPE_UD;
stride = 1;
}
/** Generic unset register constructor. */
fs_reg::fs_reg()
{
init();
this->file = BAD_FILE;
}
fs_reg::fs_reg(struct ::brw_reg reg) :
backend_reg(reg)
{
this->offset = 0;
this->stride = 1;
if (this->file == IMM &&
(this->type != BRW_REGISTER_TYPE_V &&
this->type != BRW_REGISTER_TYPE_UV &&
this->type != BRW_REGISTER_TYPE_VF)) {
this->stride = 0;
}
}
bool
fs_reg::equals(const fs_reg &r) const
{
return (this->backend_reg::equals(r) &&
stride == r.stride);
}
bool
fs_reg::negative_equals(const fs_reg &r) const
{
return (this->backend_reg::negative_equals(r) &&
stride == r.stride);
}
bool
fs_reg::is_contiguous() const
{
switch (file) {
case ARF:
case FIXED_GRF:
return hstride == BRW_HORIZONTAL_STRIDE_1 &&
vstride == width + hstride;
case MRF:
case VGRF:
case ATTR:
return stride == 1;
case UNIFORM:
case IMM:
case BAD_FILE:
return true;
}
unreachable("Invalid register file");
}
unsigned
fs_reg::component_size(unsigned width) const
{
const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
hstride == 0 ? 0 :
1 << (hstride - 1));
return MAX2(width * stride, 1) * type_sz(type);
}
/**
* Create a MOV to read the timestamp register.
*/
fs_reg
fs_visitor::get_timestamp(const fs_builder &bld)
{
assert(devinfo->ver >= 7);
fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
BRW_ARF_TIMESTAMP,
0),
BRW_REGISTER_TYPE_UD));
fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
/* We want to read the 3 fields we care about even if it's not enabled in
* the dispatch.
*/
bld.group(4, 0).exec_all().MOV(dst, ts);
return dst;
}
void
fs_visitor::vfail(const char *format, va_list va)
{
char *msg;
if (failed)
return;
failed = true;
msg = ralloc_vasprintf(mem_ctx, format, va);
msg = ralloc_asprintf(mem_ctx, "SIMD%d %s compile failed: %s\n",
dispatch_width, stage_abbrev, msg);
this->fail_msg = msg;
if (unlikely(debug_enabled)) {
fprintf(stderr, "%s", msg);
}
}
void
fs_visitor::fail(const char *format, ...)
{
va_list va;
va_start(va, format);
vfail(format, va);
va_end(va);
}
/**
* Mark this program as impossible to compile with dispatch width greater
* than n.
*
* During the SIMD8 compile (which happens first), we can detect and flag
* things that are unsupported in SIMD16+ mode, so the compiler can skip the
* SIMD16+ compile altogether.
*
* During a compile of dispatch width greater than n (if one happens anyway),
* this just calls fail().
*/
void
fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
{
if (dispatch_width > n) {
fail("%s", msg);
} else {
max_dispatch_width = MIN2(max_dispatch_width, n);
brw_shader_perf_log(compiler, log_data,
"Shader dispatch width limited to SIMD%d: %s\n",
n, msg);
}
}
/**
* Returns true if the instruction has a flag that means it won't
* update an entire destination register.
*
* For example, dead code elimination and live variable analysis want to know
* when a write to a variable screens off any preceding values that were in
* it.
*/
bool
fs_inst::is_partial_write() const
{
return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
(this->exec_size * type_sz(this->dst.type)) < 32 ||
!this->dst.is_contiguous() ||
this->dst.offset % REG_SIZE != 0);
}
unsigned
fs_inst::components_read(unsigned i) const
{
/* Return zero if the source is not present. */
if (src[i].file == BAD_FILE)
return 0;
switch (opcode) {
case FS_OPCODE_LINTERP:
if (i == 0)
return 2;
else
return 1;
case FS_OPCODE_PIXEL_X:
case FS_OPCODE_PIXEL_Y:
assert(i < 2);
if (i == 0)
return 2;
else
return 1;
case FS_OPCODE_FB_WRITE_LOGICAL:
assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
/* First/second FB write color. */
if (i < 2)
return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
else
return 1;
case SHADER_OPCODE_TEX_LOGICAL:
case SHADER_OPCODE_TXD_LOGICAL:
case SHADER_OPCODE_TXF_LOGICAL:
case SHADER_OPCODE_TXL_LOGICAL:
case SHADER_OPCODE_TXS_LOGICAL:
case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
case FS_OPCODE_TXB_LOGICAL:
case SHADER_OPCODE_TXF_CMS_LOGICAL:
case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
case SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL:
case SHADER_OPCODE_TXF_UMS_LOGICAL:
case SHADER_OPCODE_TXF_MCS_LOGICAL:
case SHADER_OPCODE_LOD_LOGICAL:
case SHADER_OPCODE_TG4_LOGICAL:
case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
/* Texture coordinates. */
if (i == TEX_LOGICAL_SRC_COORDINATE)
return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
/* Texture derivatives. */
else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
opcode == SHADER_OPCODE_TXD_LOGICAL)
return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
/* Texture offset. */
else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
return 2;
/* MCS */
else if (i == TEX_LOGICAL_SRC_MCS) {
if (opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
return 2;
else if (opcode == SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL)
return 4;
else
return 1;
} else
return 1;
case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM);
/* Surface coordinates. */
if (i == SURFACE_LOGICAL_SRC_ADDRESS)
return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
/* Surface operation source (ignored for reads). */
else if (i == SURFACE_LOGICAL_SRC_DATA)
return 0;
else
return 1;
case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
/* Surface coordinates. */
if (i == SURFACE_LOGICAL_SRC_ADDRESS)
return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
/* Surface operation source. */
else if (i == SURFACE_LOGICAL_SRC_DATA)
return src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
else
return 1;
case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
case SHADER_OPCODE_A64_OWORD_BLOCK_READ_LOGICAL:
case SHADER_OPCODE_A64_UNALIGNED_OWORD_BLOCK_READ_LOGICAL:
assert(src[2].file == IMM);
return 1;
case SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL:
assert(src[2].file == IMM);
if (i == 1) { /* data to write */
const unsigned comps = src[2].ud / exec_size;
assert(comps > 0);
return comps;
} else {
return 1;
}
case SHADER_OPCODE_UNALIGNED_OWORD_BLOCK_READ_LOGICAL:
assert(src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
return 1;
case SHADER_OPCODE_OWORD_BLOCK_WRITE_LOGICAL:
assert(src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
if (i == SURFACE_LOGICAL_SRC_DATA) {
const unsigned comps = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud / exec_size;
assert(comps > 0);
return comps;
} else {
return 1;
}
case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
assert(src[2].file == IMM);
return i == 1 ? src[2].ud : 1;
case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT16_LOGICAL:
case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
assert(src[2].file == IMM);
if (i == 1) {
/* Data source */
const unsigned op = src[2].ud;
switch (op) {
case BRW_AOP_INC:
case BRW_AOP_DEC:
case BRW_AOP_PREDEC:
return 0;
case BRW_AOP_CMPWR:
return 2;
default:
return 1;
}
} else {
return 1;
}
case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT16_LOGICAL:
case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT32_LOGICAL:
case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT64_LOGICAL:
assert(src[2].file == IMM);
if (i == 1) {
/* Data source */
const unsigned op = src[2].ud;
return op == BRW_AOP_FCMPWR ? 2 : 1;
} else {
return 1;
}
case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
/* Scattered logical opcodes use the following params:
* src[0] Surface coordinates
* src[1] Surface operation source (ignored for reads)
* src[2] Surface
* src[3] IMM with always 1 dimension.
* src[4] IMM with arg bitsize for scattered read/write 8, 16, 32
*/
assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
return i == SURFACE_LOGICAL_SRC_DATA ? 0 : 1;
case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
return 1;
case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
/* Surface coordinates. */
if (i == SURFACE_LOGICAL_SRC_ADDRESS)
return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
/* Surface operation source. */
else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_CMPWR)
return 2;
else if (i == SURFACE_LOGICAL_SRC_DATA &&
(op == BRW_AOP_INC || op == BRW_AOP_DEC || op == BRW_AOP_PREDEC))
return 0;
else
return 1;
}
case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
return (i == 0 ? 2 : 1);
case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL: {
assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
/* Surface coordinates. */
if (i == SURFACE_LOGICAL_SRC_ADDRESS)
return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
/* Surface operation source. */
else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_FCMPWR)
return 2;
else
return 1;
}
case SHADER_OPCODE_URB_WRITE_LOGICAL:
if (i == URB_LOGICAL_SRC_DATA)
return mlen - 1 -
unsigned(src[URB_LOGICAL_SRC_PER_SLOT_OFFSETS].file != BAD_FILE) -
unsigned(src[URB_LOGICAL_SRC_CHANNEL_MASK].file != BAD_FILE);
else
return 1;
default:
return 1;
}
}
unsigned
fs_inst::size_read(int arg) const
{
switch (opcode) {
case SHADER_OPCODE_SEND:
if (arg == 2) {
return mlen * REG_SIZE;
} else if (arg == 3) {
return ex_mlen * REG_SIZE;
}
break;
case FS_OPCODE_FB_WRITE:
case FS_OPCODE_REP_FB_WRITE:
if (arg == 0) {
if (base_mrf >= 0)
return src[0].file == BAD_FILE ? 0 : 2 * REG_SIZE;
else
return mlen * REG_SIZE;
}
break;
case FS_OPCODE_FB_READ:
case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
if (arg == 0)
return mlen * REG_SIZE;
break;
case FS_OPCODE_SET_SAMPLE_ID:
if (arg == 1)
return 1;
break;
case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GFX7:
/* The payload is actually stored in src1 */
if (arg == 1)
return mlen * REG_SIZE;
break;
case FS_OPCODE_LINTERP:
if (arg == 1)
return 16;
break;
case SHADER_OPCODE_LOAD_PAYLOAD:
if (arg < this->header_size)
return REG_SIZE;
break;
case CS_OPCODE_CS_TERMINATE:
case SHADER_OPCODE_BARRIER:
return REG_SIZE;
case SHADER_OPCODE_MOV_INDIRECT:
if (arg == 0) {
assert(src[2].file == IMM);
return src[2].ud;
}
break;
default:
if (is_tex() && arg == 0 && src[0].file == VGRF)
return mlen * REG_SIZE;
break;
}
switch (src[arg].file) {
case UNIFORM:
case IMM:
return components_read(arg) * type_sz(src[arg].type);
case BAD_FILE:
case ARF:
case FIXED_GRF:
case VGRF:
case ATTR:
return components_read(arg) * src[arg].component_size(exec_size);
case MRF:
unreachable("MRF registers are not allowed as sources");
}
return 0;
}
namespace {
unsigned
predicate_width(brw_predicate predicate)
{
switch (predicate) {
case BRW_PREDICATE_NONE: return 1;
case BRW_PREDICATE_NORMAL: return 1;
case BRW_PREDICATE_ALIGN1_ANY2H: return 2;
case BRW_PREDICATE_ALIGN1_ALL2H: return 2;
case BRW_PREDICATE_ALIGN1_ANY4H: return 4;
case BRW_PREDICATE_ALIGN1_ALL4H: return 4;
case BRW_PREDICATE_ALIGN1_ANY8H: return 8;
case BRW_PREDICATE_ALIGN1_ALL8H: return 8;
case BRW_PREDICATE_ALIGN1_ANY16H: return 16;
case BRW_PREDICATE_ALIGN1_ALL16H: return 16;
case BRW_PREDICATE_ALIGN1_ANY32H: return 32;
case BRW_PREDICATE_ALIGN1_ALL32H: return 32;
default: unreachable("Unsupported predicate");
}
}
/* Return the subset of flag registers that an instruction could
* potentially read or write based on the execution controls and flag
* subregister number of the instruction.
*/
unsigned
flag_mask(const fs_inst *inst, unsigned width)
{
assert(util_is_power_of_two_nonzero(width));
const unsigned start = (inst->flag_subreg * 16 + inst->group) &
~(width - 1);
const unsigned end = start + ALIGN(inst->exec_size, width);
return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
}
unsigned
bit_mask(unsigned n)
{
return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1);
}