forked from notaz/mesa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbrw_fs_nir.cpp
6683 lines (5800 loc) · 241 KB
/
brw_fs_nir.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "compiler/glsl/ir.h"
#include "brw_fs.h"
#include "brw_nir.h"
#include "brw_rt.h"
#include "brw_eu.h"
#include "nir_search_helpers.h"
#include "util/u_math.h"
#include "util/bitscan.h"
using namespace brw;
void
fs_visitor::emit_nir_code()
{
emit_shader_float_controls_execution_mode();
/* emit the arrays used for inputs and outputs - load/store intrinsics will
* be converted to reads/writes of these arrays
*/
nir_setup_outputs();
nir_setup_uniforms();
nir_emit_system_values();
last_scratch = ALIGN(nir->scratch_size, 4) * dispatch_width;
nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
bld.emit(SHADER_OPCODE_HALT_TARGET);
}
void
fs_visitor::nir_setup_outputs()
{
if (stage == MESA_SHADER_TESS_CTRL ||
stage == MESA_SHADER_TASK ||
stage == MESA_SHADER_MESH ||
stage == MESA_SHADER_FRAGMENT)
return;
unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
/* Calculate the size of output registers in a separate pass, before
* allocating them. With ARB_enhanced_layouts, multiple output variables
* may occupy the same slot, but have different type sizes.
*/
nir_foreach_shader_out_variable(var, nir) {
const int loc = var->data.driver_location;
const unsigned var_vec4s =
var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
: type_size_vec4(var->type, true);
vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
}
for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
if (vec4s[loc] == 0) {
loc++;
continue;
}
unsigned reg_size = vec4s[loc];
/* Check if there are any ranges that start within this range and extend
* past it. If so, include them in this allocation.
*/
for (unsigned i = 1; i < reg_size; i++) {
assert(i + loc < ARRAY_SIZE(vec4s));
reg_size = MAX2(vec4s[i + loc] + i, reg_size);
}
fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
for (unsigned i = 0; i < reg_size; i++) {
assert(loc + i < ARRAY_SIZE(outputs));
outputs[loc + i] = offset(reg, bld, 4 * i);
}
loc += reg_size;
}
}
void
fs_visitor::nir_setup_uniforms()
{
/* Only the first compile gets to set up uniforms. */
if (push_constant_loc)
return;
uniforms = nir->num_uniforms / 4;
if (gl_shader_stage_is_compute(stage) && devinfo->verx10 < 125) {
/* Add uniforms for builtins after regular NIR uniforms. */
assert(uniforms == prog_data->nr_params);
/* Subgroup ID must be the last uniform on the list. This will make
* easier later to split between cross thread and per thread
* uniforms.
*/
uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
*param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
uniforms++;
}
}
static bool
emit_system_values_block(nir_block *block, fs_visitor *v)
{
fs_reg *reg;
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_load_vertex_id:
case nir_intrinsic_load_base_vertex:
unreachable("should be lowered by nir_lower_system_values().");
case nir_intrinsic_load_vertex_id_zero_base:
case nir_intrinsic_load_is_indexed_draw:
case nir_intrinsic_load_first_vertex:
case nir_intrinsic_load_instance_id:
case nir_intrinsic_load_base_instance:
unreachable("should be lowered by brw_nir_lower_vs_inputs().");
break;
case nir_intrinsic_load_draw_id:
/* For Task/Mesh, draw_id will be handled later in
* nir_emit_mesh_task_intrinsic().
*/
if (!gl_shader_stage_is_mesh(v->stage))
unreachable("should be lowered by brw_nir_lower_vs_inputs().");
break;
case nir_intrinsic_load_invocation_id:
if (v->stage == MESA_SHADER_TESS_CTRL)
break;
assert(v->stage == MESA_SHADER_GEOMETRY);
reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
if (reg->file == BAD_FILE) {
const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
abld.SHR(iid, g1, brw_imm_ud(27u));
*reg = iid;
}
break;
case nir_intrinsic_load_sample_pos:
case nir_intrinsic_load_sample_pos_or_center:
assert(v->stage == MESA_SHADER_FRAGMENT);
reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
if (reg->file == BAD_FILE)
*reg = v->emit_samplepos_setup();
break;
case nir_intrinsic_load_sample_id:
assert(v->stage == MESA_SHADER_FRAGMENT);
reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
if (reg->file == BAD_FILE)
*reg = v->emit_sampleid_setup();
break;
case nir_intrinsic_load_sample_mask_in:
assert(v->stage == MESA_SHADER_FRAGMENT);
assert(v->devinfo->ver >= 7);
reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
if (reg->file == BAD_FILE)
*reg = v->emit_samplemaskin_setup();
break;
case nir_intrinsic_load_workgroup_id:
assert(gl_shader_stage_uses_workgroup(v->stage));
reg = &v->nir_system_values[SYSTEM_VALUE_WORKGROUP_ID];
if (reg->file == BAD_FILE)
*reg = v->emit_work_group_id_setup();
break;
case nir_intrinsic_load_helper_invocation:
assert(v->stage == MESA_SHADER_FRAGMENT);
reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
if (reg->file == BAD_FILE) {
const fs_builder abld =
v->bld.annotate("gl_HelperInvocation", NULL);
/* On Gfx6+ (gl_HelperInvocation is only exposed on Gfx7+) the
* pixel mask is in g1.7 of the thread payload.
*
* We move the per-channel pixel enable bit to the low bit of each
* channel by shifting the byte containing the pixel mask by the
* vector immediate 0x76543210UV.
*
* The region of <1,8,0> reads only 1 byte (the pixel masks for
* subspans 0 and 1) in SIMD8 and an additional byte (the pixel
* masks for 2 and 3) in SIMD16.
*/
fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
hbld.SHR(offset(shifted, hbld, i),
stride(retype(brw_vec1_grf(1 + i, 7),
BRW_REGISTER_TYPE_UB),
1, 8, 0),
brw_imm_v(0x76543210));
}
/* A set bit in the pixel mask means the channel is enabled, but
* that is the opposite of gl_HelperInvocation so we need to invert
* the mask.
*
* The negate source-modifier bit of logical instructions on Gfx8+
* performs 1's complement negation, so we can use that instead of
* a NOT instruction.
*/
fs_reg inverted = negate(shifted);
if (v->devinfo->ver < 8) {
inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
abld.NOT(inverted, shifted);
}
/* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
* with 1 and negating.
*/
fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
abld.AND(anded, inverted, brw_imm_uw(1));
fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
*reg = dst;
}
break;
case nir_intrinsic_load_frag_shading_rate:
reg = &v->nir_system_values[SYSTEM_VALUE_FRAG_SHADING_RATE];
if (reg->file == BAD_FILE)
*reg = v->emit_shading_rate_setup();
break;
default:
break;
}
}
return true;
}
void
fs_visitor::nir_emit_system_values()
{
nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
nir_system_values[i] = fs_reg();
}
/* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
* never end up using it.
*/
{
const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
fs_reg ® = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
const fs_builder allbld8 = abld.group(8, 0).exec_all();
allbld8.MOV(reg, brw_imm_v(0x76543210));
if (dispatch_width > 8)
allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
if (dispatch_width > 16) {
const fs_builder allbld16 = abld.group(16, 0).exec_all();
allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
}
}
nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
nir_foreach_block(block, impl)
emit_system_values_block(block, this);
}
void
fs_visitor::nir_emit_impl(nir_function_impl *impl)
{
nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
for (unsigned i = 0; i < impl->reg_alloc; i++) {
nir_locals[i] = fs_reg();
}
foreach_list_typed(nir_register, reg, node, &impl->registers) {
unsigned array_elems =
reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
unsigned size = array_elems * reg->num_components;
const brw_reg_type reg_type = reg->bit_size == 8 ? BRW_REGISTER_TYPE_B :
brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
nir_locals[reg->index] = bld.vgrf(reg_type, size);
}
nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
impl->ssa_alloc);
nir_emit_cf_list(&impl->body);
}
void
fs_visitor::nir_emit_cf_list(exec_list *list)
{
exec_list_validate(list);
foreach_list_typed(nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_if:
nir_emit_if(nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
nir_emit_loop(nir_cf_node_as_loop(node));
break;
case nir_cf_node_block:
nir_emit_block(nir_cf_node_as_block(node));
break;
default:
unreachable("Invalid CFG node block");
}
}
}
void
fs_visitor::nir_emit_if(nir_if *if_stmt)
{
bool invert;
fs_reg cond_reg;
/* If the condition has the form !other_condition, use other_condition as
* the source, but invert the predicate on the if instruction.
*/
nir_alu_instr *cond = nir_src_as_alu_instr(if_stmt->condition);
if (cond != NULL && cond->op == nir_op_inot) {
invert = true;
cond_reg = get_nir_src(cond->src[0].src);
cond_reg = offset(cond_reg, bld, cond->src[0].swizzle[0]);
} else {
invert = false;
cond_reg = get_nir_src(if_stmt->condition);
}
/* first, put the condition into f0 */
fs_inst *inst = bld.MOV(bld.null_reg_d(),
retype(cond_reg, BRW_REGISTER_TYPE_D));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
bld.IF(BRW_PREDICATE_NORMAL)->predicate_inverse = invert;
nir_emit_cf_list(&if_stmt->then_list);
if (!nir_cf_list_is_empty_block(&if_stmt->else_list)) {
bld.emit(BRW_OPCODE_ELSE);
nir_emit_cf_list(&if_stmt->else_list);
}
bld.emit(BRW_OPCODE_ENDIF);
if (devinfo->ver < 7)
limit_dispatch_width(16, "Non-uniform control flow unsupported "
"in SIMD32 mode.");
}
void
fs_visitor::nir_emit_loop(nir_loop *loop)
{
bld.emit(BRW_OPCODE_DO);
nir_emit_cf_list(&loop->body);
bld.emit(BRW_OPCODE_WHILE);
if (devinfo->ver < 7)
limit_dispatch_width(16, "Non-uniform control flow unsupported "
"in SIMD32 mode.");
}
void
fs_visitor::nir_emit_block(nir_block *block)
{
nir_foreach_instr(instr, block) {
nir_emit_instr(instr);
}
}
void
fs_visitor::nir_emit_instr(nir_instr *instr)
{
const fs_builder abld = bld.annotate(NULL, instr);
switch (instr->type) {
case nir_instr_type_alu:
nir_emit_alu(abld, nir_instr_as_alu(instr), true);
break;
case nir_instr_type_deref:
unreachable("All derefs should've been lowered");
break;
case nir_instr_type_intrinsic:
switch (stage) {
case MESA_SHADER_VERTEX:
nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
break;
case MESA_SHADER_TESS_CTRL:
nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
break;
case MESA_SHADER_TESS_EVAL:
nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
break;
case MESA_SHADER_GEOMETRY:
nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
break;
case MESA_SHADER_FRAGMENT:
nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
break;
case MESA_SHADER_COMPUTE:
case MESA_SHADER_KERNEL:
nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
break;
case MESA_SHADER_RAYGEN:
case MESA_SHADER_ANY_HIT:
case MESA_SHADER_CLOSEST_HIT:
case MESA_SHADER_MISS:
case MESA_SHADER_INTERSECTION:
case MESA_SHADER_CALLABLE:
nir_emit_bs_intrinsic(abld, nir_instr_as_intrinsic(instr));
break;
case MESA_SHADER_TASK:
nir_emit_task_intrinsic(abld, nir_instr_as_intrinsic(instr));
break;
case MESA_SHADER_MESH:
nir_emit_mesh_intrinsic(abld, nir_instr_as_intrinsic(instr));
break;
default:
unreachable("unsupported shader stage");
}
break;
case nir_instr_type_tex:
nir_emit_texture(abld, nir_instr_as_tex(instr));
break;
case nir_instr_type_load_const:
nir_emit_load_const(abld, nir_instr_as_load_const(instr));
break;
case nir_instr_type_ssa_undef:
/* We create a new VGRF for undefs on every use (by handling
* them in get_nir_src()), rather than for each definition.
* This helps register coalescing eliminate MOVs from undef.
*/
break;
case nir_instr_type_jump:
nir_emit_jump(abld, nir_instr_as_jump(instr));
break;
default:
unreachable("unknown instruction type");
}
}
/**
* Recognizes a parent instruction of nir_op_extract_* and changes the type to
* match instr.
*/
bool
fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
const fs_reg &result)
{
if (!instr->src[0].src.is_ssa ||
!instr->src[0].src.ssa->parent_instr)
return false;
if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
return false;
nir_alu_instr *src0 =
nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
return false;
unsigned element = nir_src_as_uint(src0->src[1].src);
/* Element type to extract.*/
const brw_reg_type type = brw_int_type(
src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
fs_reg op0 = get_nir_src(src0->src[0].src);
op0.type = brw_type_for_nir_type(devinfo,
(nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
nir_src_bit_size(src0->src[0].src)));
op0 = offset(op0, bld, src0->src[0].swizzle[0]);
bld.MOV(result, subscript(op0, type, element));
return true;
}
bool
fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
const fs_reg &result)
{
nir_intrinsic_instr *src0 = nir_src_as_intrinsic(instr->src[0].src);
if (src0 == NULL || src0->intrinsic != nir_intrinsic_load_front_face)
return false;
if (!nir_src_is_const(instr->src[1].src) ||
!nir_src_is_const(instr->src[2].src))
return false;
const float value1 = nir_src_as_float(instr->src[1].src);
const float value2 = nir_src_as_float(instr->src[2].src);
if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
return false;
/* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
assert(value1 == -value2);
fs_reg tmp = vgrf(glsl_type::int_type);
if (devinfo->ver >= 12) {
/* Bit 15 of g1.1 is 0 if the polygon is front facing. */
fs_reg g1 = fs_reg(retype(brw_vec1_grf(1, 1), BRW_REGISTER_TYPE_W));
/* For (gl_FrontFacing ? 1.0 : -1.0), emit:
*
* or(8) tmp.1<2>W g1.1<0,1,0>W 0x00003f80W
* and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
*
* and negate g1.1<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
*/
if (value1 == -1.0f)
g1.negate = true;
bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
g1, brw_imm_uw(0x3f80));
} else if (devinfo->ver >= 6) {
/* Bit 15 of g0.0 is 0 if the polygon is front facing. */
fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
/* For (gl_FrontFacing ? 1.0 : -1.0), emit:
*
* or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
* and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
*
* and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
*
* This negation looks like it's safe in practice, because bits 0:4 will
* surely be TRIANGLES
*/
if (value1 == -1.0f) {
g0.negate = true;
}
bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
g0, brw_imm_uw(0x3f80));
} else {
/* Bit 31 of g1.6 is 0 if the polygon is front facing. */
fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
/* For (gl_FrontFacing ? 1.0 : -1.0), emit:
*
* or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
* and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
*
* and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
*
* This negation looks like it's safe in practice, because bits 0:4 will
* surely be TRIANGLES
*/
if (value1 == -1.0f) {
g1_6.negate = true;
}
bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
}
bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
return true;
}
static void
emit_find_msb_using_lzd(const fs_builder &bld,
const fs_reg &result,
const fs_reg &src,
bool is_signed)
{
fs_inst *inst;
fs_reg temp = src;
if (is_signed) {
/* LZD of an absolute value source almost always does the right
* thing. There are two problem values:
*
* * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
* 0. However, findMSB(int(0x80000000)) == 30.
*
* * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
* 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
*
* For a value of zero or negative one, -1 will be returned.
*
* * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
* findMSB(-(1<<x)) should return x-1.
*
* For all negative number cases, including 0x80000000 and
* 0xffffffff, the correct value is obtained from LZD if instead of
* negating the (already negative) value the logical-not is used. A
* conditional logical-not can be achieved in two instructions.
*/
temp = bld.vgrf(BRW_REGISTER_TYPE_D);
bld.ASR(temp, src, brw_imm_d(31));
bld.XOR(temp, temp, src);
}
bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
retype(temp, BRW_REGISTER_TYPE_UD));
/* LZD counts from the MSB side, while GLSL's findMSB() wants the count
* from the LSB side. Subtract the result from 31 to convert the MSB
* count into an LSB count. If no bits are set, LZD will return 32.
* 31-32 = -1, which is exactly what findMSB() is supposed to return.
*/
inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
inst->src[0].negate = true;
}
static brw_rnd_mode
brw_rnd_mode_from_nir_op (const nir_op op) {
switch (op) {
case nir_op_f2f16_rtz:
return BRW_RND_MODE_RTZ;
case nir_op_f2f16_rtne:
return BRW_RND_MODE_RTNE;
default:
unreachable("Operation doesn't support rounding mode");
}
}
static brw_rnd_mode
brw_rnd_mode_from_execution_mode(unsigned execution_mode)
{
if (nir_has_any_rounding_mode_rtne(execution_mode))
return BRW_RND_MODE_RTNE;
if (nir_has_any_rounding_mode_rtz(execution_mode))
return BRW_RND_MODE_RTZ;
return BRW_RND_MODE_UNSPECIFIED;
}
fs_reg
fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
nir_alu_instr *instr,
fs_reg *op,
bool need_dest)
{
fs_reg result =
need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
result.type = brw_type_for_nir_type(devinfo,
(nir_alu_type)(nir_op_infos[instr->op].output_type |
nir_dest_bit_size(instr->dest.dest)));
assert(!instr->dest.saturate);
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
/* We don't lower to source modifiers so they should not exist. */
assert(!instr->src[i].abs);
assert(!instr->src[i].negate);
op[i] = get_nir_src(instr->src[i].src);
op[i].type = brw_type_for_nir_type(devinfo,
(nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
nir_src_bit_size(instr->src[i].src)));
}
/* Move and vecN instrutions may still be vectored. Return the raw,
* vectored source and destination so that fs_visitor::nir_emit_alu can
* handle it. Other callers should not have to handle these kinds of
* instructions.
*/
switch (instr->op) {
case nir_op_mov:
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4:
case nir_op_vec8:
case nir_op_vec16:
return result;
default:
break;
}
/* At this point, we have dealt with any instruction that operates on
* more than a single channel. Therefore, we can just adjust the source
* and destination registers for that channel and emit the instruction.
*/
unsigned channel = 0;
if (nir_op_infos[instr->op].output_size == 0) {
/* Since NIR is doing the scalarizing for us, we should only ever see
* vectorized operations with a single channel.
*/
assert(util_bitcount(instr->dest.write_mask) == 1);
channel = ffs(instr->dest.write_mask) - 1;
result = offset(result, bld, channel);
}
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
assert(nir_op_infos[instr->op].input_sizes[i] < 2);
op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
}
return result;
}
void
fs_visitor::resolve_inot_sources(const fs_builder &bld, nir_alu_instr *instr,
fs_reg *op)
{
for (unsigned i = 0; i < 2; i++) {
nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[i].src);
if (inot_instr != NULL && inot_instr->op == nir_op_inot) {
/* The source of the inot is now the source of instr. */
prepare_alu_destination_and_sources(bld, inot_instr, &op[i], false);
assert(!op[i].negate);
op[i].negate = true;
} else {
op[i] = resolve_source_modifiers(op[i]);
}
}
}
bool
fs_visitor::try_emit_b2fi_of_inot(const fs_builder &bld,
fs_reg result,
nir_alu_instr *instr)
{
if (devinfo->ver < 6 || devinfo->verx10 >= 125)
return false;
nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[0].src);
if (inot_instr == NULL || inot_instr->op != nir_op_inot)
return false;
/* HF is also possible as a destination on BDW+. For nir_op_b2i, the set
* of valid size-changing combinations is a bit more complex.
*
* The source restriction is just because I was lazy about generating the
* constant below.
*/
if (nir_dest_bit_size(instr->dest.dest) != 32 ||
nir_src_bit_size(inot_instr->src[0].src) != 32)
return false;
/* b2[fi](inot(a)) maps a=0 => 1, a=-1 => 0. Since a can only be 0 or -1,
* this is float(1 + a).
*/
fs_reg op;
prepare_alu_destination_and_sources(bld, inot_instr, &op, false);
/* Ignore the saturate modifier, if there is one. The result of the
* arithmetic can only be 0 or 1, so the clamping will do nothing anyway.
*/
bld.ADD(result, op, brw_imm_d(1));
return true;
}
/**
* Emit code for nir_op_fsign possibly fused with a nir_op_fmul
*
* If \c instr is not the \c nir_op_fsign, then \c fsign_src is the index of
* the source of \c instr that is a \c nir_op_fsign.
*/
void
fs_visitor::emit_fsign(const fs_builder &bld, const nir_alu_instr *instr,
fs_reg result, fs_reg *op, unsigned fsign_src)
{
fs_inst *inst;
assert(instr->op == nir_op_fsign || instr->op == nir_op_fmul);
assert(fsign_src < nir_op_infos[instr->op].num_inputs);
if (instr->op != nir_op_fsign) {
const nir_alu_instr *const fsign_instr =
nir_src_as_alu_instr(instr->src[fsign_src].src);
/* op[fsign_src] has the nominal result of the fsign, and op[1 -
* fsign_src] has the other multiply source. This must be rearranged so
* that op[0] is the source of the fsign op[1] is the other multiply
* source.
*/
if (fsign_src != 0)
op[1] = op[0];
op[0] = get_nir_src(fsign_instr->src[0].src);
const nir_alu_type t =
(nir_alu_type)(nir_op_infos[instr->op].input_types[0] |
nir_src_bit_size(fsign_instr->src[0].src));
op[0].type = brw_type_for_nir_type(devinfo, t);
unsigned channel = 0;
if (nir_op_infos[instr->op].output_size == 0) {
/* Since NIR is doing the scalarizing for us, we should only ever see
* vectorized operations with a single channel.
*/
assert(util_bitcount(instr->dest.write_mask) == 1);
channel = ffs(instr->dest.write_mask) - 1;
}
op[0] = offset(op[0], bld, fsign_instr->src[0].swizzle[channel]);
}
if (type_sz(op[0].type) == 2) {
/* AND(val, 0x8000) gives the sign bit.
*
* Predicated OR ORs 1.0 (0x3c00) with the sign bit if val is not zero.
*/
fs_reg zero = retype(brw_imm_uw(0), BRW_REGISTER_TYPE_HF);
bld.CMP(bld.null_reg_f(), op[0], zero, BRW_CONDITIONAL_NZ);
op[0].type = BRW_REGISTER_TYPE_UW;
result.type = BRW_REGISTER_TYPE_UW;
bld.AND(result, op[0], brw_imm_uw(0x8000u));
if (instr->op == nir_op_fsign)
inst = bld.OR(result, result, brw_imm_uw(0x3c00u));
else {
/* Use XOR here to get the result sign correct. */
inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UW));
}
inst->predicate = BRW_PREDICATE_NORMAL;
} else if (type_sz(op[0].type) == 4) {
/* AND(val, 0x80000000) gives the sign bit.
*
* Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
* zero.
*/
bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
op[0].type = BRW_REGISTER_TYPE_UD;
result.type = BRW_REGISTER_TYPE_UD;
bld.AND(result, op[0], brw_imm_ud(0x80000000u));
if (instr->op == nir_op_fsign)
inst = bld.OR(result, result, brw_imm_ud(0x3f800000u));
else {
/* Use XOR here to get the result sign correct. */
inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UD));
}
inst->predicate = BRW_PREDICATE_NORMAL;
} else {
/* For doubles we do the same but we need to consider:
*
* - 2-src instructions can't operate with 64-bit immediates
* - The sign is encoded in the high 32-bit of each DF
* - We need to produce a DF result.
*/
fs_reg zero = vgrf(glsl_type::double_type);
bld.MOV(zero, setup_imm_df(bld, 0.0));
bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
bld.MOV(result, zero);
fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
brw_imm_ud(0x80000000u));
if (instr->op == nir_op_fsign) {
set_predicate(BRW_PREDICATE_NORMAL,
bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
} else {
/* This could be done better in some cases. If the scale is an
* immediate with the low 32-bits all 0, emitting a separate XOR and
* OR would allow an algebraic optimization to remove the OR. There
* are currently zero instances of fsign(double(x))*IMM in shader-db
* or any test suite, so it is hard to care at this time.
*/
fs_reg result_int64 = retype(result, BRW_REGISTER_TYPE_UQ);
inst = bld.XOR(result_int64, result_int64,
retype(op[1], BRW_REGISTER_TYPE_UQ));
}
}
}
/**
* Determine whether sources of a nir_op_fmul can be fused with a nir_op_fsign
*
* Checks the operands of a \c nir_op_fmul to determine whether or not
* \c emit_fsign could fuse the multiplication with the \c sign() calculation.
*
* \param instr The multiplication instruction
*
* \param fsign_src The source of \c instr that may or may not be a
* \c nir_op_fsign
*/
static bool
can_fuse_fmul_fsign(nir_alu_instr *instr, unsigned fsign_src)
{
assert(instr->op == nir_op_fmul);
nir_alu_instr *const fsign_instr =
nir_src_as_alu_instr(instr->src[fsign_src].src);
/* Rules:
*
* 1. instr->src[fsign_src] must be a nir_op_fsign.
* 2. The nir_op_fsign can only be used by this multiplication.
* 3. The source that is the nir_op_fsign does not have source modifiers.
* \c emit_fsign only examines the source modifiers of the source of the
* \c nir_op_fsign.
*
* The nir_op_fsign must also not have the saturate modifier, but steps
* have already been taken (in nir_opt_algebraic) to ensure that.
*/
return fsign_instr != NULL && fsign_instr->op == nir_op_fsign &&
is_used_once(fsign_instr);
}
void
fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr,
bool need_dest)
{
fs_inst *inst;
unsigned execution_mode =
bld.shader->nir->info.float_controls_execution_mode;
fs_reg op[NIR_MAX_VEC_COMPONENTS];
fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, need_dest);
#ifndef NDEBUG
/* Everything except raw moves, some type conversions, iabs, and ineg
* should have 8-bit sources lowered by nir_lower_bit_size in
* brw_preprocess_nir or by brw_nir_lower_conversions in
* brw_postprocess_nir.
*/
switch (instr->op) {
case nir_op_mov:
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4:
case nir_op_vec8:
case nir_op_vec16:
case nir_op_i2f16:
case nir_op_i2f32:
case nir_op_i2i16:
case nir_op_i2i32:
case nir_op_u2f16:
case nir_op_u2f32:
case nir_op_u2u16:
case nir_op_u2u32:
case nir_op_iabs:
case nir_op_ineg:
case nir_op_pack_32_4x8_split:
break;
default:
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
assert(type_sz(op[i].type) > 1);
}
}