-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathKingGruff.cpp
121 lines (102 loc) · 2.93 KB
/
KingGruff.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#include <bits/stdc++.h>
using namespace std;
/*
//Dijkstra (1 time) start from A...
A = 1, B = 3;
start from A, go to B
Dijkstra(A, B): dis1: {0, 5, 7, 8}
Dijkstra(B, A): Dis2: {7, 2, 0, inf} <-- use a reverse graph
if we have edge <u, v>:
May be on the path from A --> B
distance is: dis1[u] + len of <u, v> + dis2[v]
i. e edge <1, 2> with weight 5 and cost 1
lst: {(7, 1), (10, 15), (7, 15)} <-- (length, cost)
<3, 1>: dis1[3] + len of <3, 1> (80) + dis2[1] = 7 + 80 + 7 = 94
lst: {(7, 1), (10, 50), (7, 15), (94, 1000),
<3, 4> dis1[3] + 1 + dis2[4] = inf
lst: {(7, 1), (10, 50), (7, 15), (94, 1000), (inf, 1)}
find all the info for each edge, then sort by length.
lst: {(7, 1), (7, 15), (10, 50), (94, 1000), (inf, 1)}
Then make a prefix sum array...
lst: {(7, 1), (7, 16), (10, 66), (94, 1066), (inf, 1067)}
then just use upper bound to find the length.
dijkstra twice: st --> en, en --> st
calculate dist from edges... --> dis1[u] + len of <u, v> + dis2[v]
use upper_bound to solve the problem
*/
struct edge{
int v, w, c;
edge(int vv, int ww, int cc){
v = vv, w = ww, c = cc;
}
};
typedef pair<int, int> ii;
typedef long long ll;
typedef pair<ll, ll> llll;
typedef vector<ii> vii;
typedef vector<llll> vll;
bool comp(ii a, ii b){
return a.first < b.first;
}
int N, M, st, en, x, y, w, c;
ll dist1[100010], dist2[100010];
llll edges[100010];
vector<edge> adj[100010], rev[100010];
int main(){
scanf("%d %d %d %d", &N, &M, &st, &en); st--; en--;
for(int i =0; i < M; i++){
scanf("%d %d %d %d", &x, &y, &w, &c);
//printf("%d %d %d %d\n", x, y, w, c);
x--; y--;
adj[x].push_back(edge(y, w, c));
rev[y].push_back(edge(x, w, c));
}
priority_queue<llll, vll, greater<llll>> pq;
pq.push(llll(0, st));
memset(dist1, 0x3f3f3f, sizeof(dist1));
dist1[st] = 0;
while(!pq.empty()){
int u = pq.top().second; pq.pop();
//cout << u+1 << endl;
for(edge v : adj[u]){
if(dist1[v.v] > dist1[u] + v.w){
//printf("<%d, %d>\n", u+1, 1+v.v);
dist1[v.v] = dist1[u] + v.w;
pq.push(llll(dist1[v.v], v.v));
}
}
}
pq.push(llll(0, en));
memset(dist2, 0x3f3f3f, sizeof(dist2));
dist2[en] = 0;
while(!pq.empty()){
int u = pq.top().second; pq.pop();
for(edge v : rev[u]){
if(dist2[v.v] > dist2[u] + v.w){
dist2[v.v] = dist2[u] + v.w;
pq.push(llll(dist2[v.v], v.v));
}
}
}
//for(int i =0; i < N; i++) printf("%d, ", dist1[i]); cout << endl;
//for(int i =0; i < N; i++) printf("%d, ", dist2[i]); cout << endl;
int cnt = 0;
for(int i = 0; i <N; i++){
for(edge e : adj[i]){
edges[cnt++] = llll(dist1[i]+dist2[e.v]+e.w, e.c);
}
}
sort(edges, edges+cnt, comp);
for(int i =0; i < cnt; i++){
if(i) edges[i] = llll(edges[i].first, edges[i].second + edges[i-1].second);
//printf("%d %d\n", edges[i].first, edges[i].second);
}
int Q, D;
scanf("%d", &Q);
for(int q = 0; q < Q; q++){
scanf("%d", &D);
auto iter = upper_bound(edges, edges+cnt, llll(D, 0x3f3f3f3f3f3f));
cout << (iter-1)->second << endl;
}
return 0;
}