forked from hezhangsprinter/DCPDN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_testsample.py
133 lines (102 loc) · 2.63 KB
/
generate_testsample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from __future__ import division
import numpy as np
import sys
sys.path.append("./mingqingscript")
import scipy.io as sio
import scipy.ndimage.interpolation
#import scipy.signal
import os
import math
import random
import pdb
import random
import numpy as np
import pickle
import random
import sys
import shutil
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib.patches as patches
# torch condiguration
import argparse
from math import log10
#import scipy.io as sio
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
import torch.cuda
import torch.backends.cudnn as cudnn
import copy
import torch.backends.cudnn as cudnn
import random
from random import uniform
import h5py
import time
import PIL
from PIL import Image
import skimage
import h5py
import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage, misc
import glob
# plt.axis([0, 10, 0, 1])
# plt.ion()
# for i in range(10):
# y = np.random.random()
# plt.scatter(i, y)
# plt.pause(0.05)
#
# while True:
# plt.pause(0.05)
def array2PIL(arr, size):
mode = 'RGBA'
arr = arr.reshape(arr.shape[0]*arr.shape[1], arr.shape[2])
if len(arr[0]) == 3:
arr = np.c_[arr, 255*numpy.ones((len(arr),1), numpy.uint8)]
return Image.frombuffer(mode, size, arr.tostring(), 'raw', mode, 0, 1)
index=1
train_list_per=glob.glob('./cvprw_test_resize_crop/*png')
# print train_list_per
from skimage import color
total_num=0
for item in train_list_per:
img=misc.imread(item)
# img=skimage.color.rgb2luv(img)
# zz=img.shape
# size1=(zz[0]/2)
# size1=np.int(size1)
# img=img[0:size1,:,:]
# pdb.set_trace()
directory='./facades/test_cvpr/'
if not os.path.exists(directory):
os.makedirs(directory)
zz=filter(str.isdigit, item)
# zz=plt.imshow(img)
# plt.show()
# img=misc.imresize(img,[256,512]).astype(float)
haze_image=img
gt_img=img
# pdb.set_trace()
img=img/255
haze_image=haze_image/255
gt_img=gt_img/255
maxhazy = img.max()
minhazy = img.min()
# img = (img - minhazy) / (maxhazy - minhazy)
# img = (img) / (maxhazy )
# pdb.set_trace()
# h5f=h5py.File('./facades/newsyn/'+str(total_num)+'.h5','w')
h5f=h5py.File('./facades/test_cvpr/'+str(total_num)+'.h5','w')
h5f.create_dataset('haze',data=haze_image)
h5f.create_dataset('trans',data=gt_img)
h5f.create_dataset('ato',data=gt_img)
h5f.create_dataset('gt',data=gt_img)
print img.max()
print img.min()
total_num=total_num+1
print total_num