forked from mne-tools/mne-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
defaults.py
106 lines (95 loc) · 4.36 KB
/
defaults.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# Authors: Alexandre Gramfort <[email protected]>
# Denis A. Engemann <[email protected]>
# Eric Larson <[email protected]>
#
# License: BSD (3-clause)
from copy import deepcopy
DEFAULTS = dict(
color=dict(mag='darkblue', grad='b', eeg='k', eog='k', ecg='m', emg='k',
ref_meg='steelblue', misc='k', stim='k', resp='k', chpi='k',
exci='k', ias='k', syst='k', seeg='saddlebrown', dipole='k',
gof='k', bio='k', ecog='k', hbo='#AA3377', hbr='b',
fnirs_raw='k', fnirs_od='k', csd='k'),
units=dict(mag='fT', grad='fT/cm', eeg='µV', eog='µV', ecg='µV', emg='µV',
misc='AU', seeg='mV', dipole='nAm', gof='GOF', bio='µV',
ecog='µV', hbo='µM', hbr='µM', ref_meg='fT', fnirs_raw='V',
fnirs_od='V', csd='mV/m²'),
# scalings for the units
scalings=dict(mag=1e15, grad=1e13, eeg=1e6, eog=1e6, emg=1e6, ecg=1e6,
misc=1.0, seeg=1e3, dipole=1e9, gof=1.0, bio=1e6, ecog=1e6,
hbo=1e6, hbr=1e6, ref_meg=1e15, fnirs_raw=1.0, fnirs_od=1.0,
csd=1e3),
# rough guess for a good plot
scalings_plot_raw=dict(mag=1e-12, grad=4e-11, eeg=20e-6, eog=150e-6,
ecg=5e-4, emg=1e-3, ref_meg=1e-12, misc='auto',
stim=1, resp=1, chpi=1e-4, exci=1, ias=1, syst=1,
seeg=1e-4, bio=1e-6, ecog=1e-4, hbo=10e-6,
hbr=10e-6, whitened=10., fnirs_raw=2e-2,
fnirs_od=2e-2, csd=200e-4),
scalings_cov_rank=dict(mag=1e12, grad=1e11, eeg=1e5, # ~100x scalings
seeg=1e1, ecog=1e4, hbo=1e4, hbr=1e4),
ylim=dict(mag=(-600., 600.), grad=(-200., 200.), eeg=(-200., 200.),
misc=(-5., 5.), seeg=(-20., 20.), dipole=(-100., 100.),
gof=(0., 1.), bio=(-500., 500.), ecog=(-200., 200.), hbo=(0, 20),
hbr=(0, 20), csd=(-50., 50.)),
titles=dict(mag='Magnetometers', grad='Gradiometers', eeg='EEG', eog='EOG',
ecg='ECG', emg='EMG', misc='misc', seeg='sEEG', bio='BIO',
dipole='Dipole', ecog='ECoG', hbo='Oxyhemoglobin',
ref_meg='Reference Magnetometers', fnirs_raw='fNIRS (raw)',
fnirs_od='fNIRS (OD)', hbr='Deoxyhemoglobin',
gof='Goodness of fit', csd='Current source density'),
mask_params=dict(marker='o',
markerfacecolor='w',
markeredgecolor='k',
linewidth=0,
markeredgewidth=1,
markersize=4),
coreg=dict(
mri_fid_opacity=1.0,
dig_fid_opacity=0.3,
mri_fid_scale=1e-2,
dig_fid_scale=3e-2,
extra_scale=4e-3,
eeg_scale=4e-3, eegp_scale=20e-3, eegp_height=0.1,
ecog_scale=5e-3,
seeg_scale=5e-3,
fnirs_scale=5e-3,
source_scale=5e-3,
detector_scale=5e-3,
hpi_scale=15e-3,
head_color=(0.988, 0.89, 0.74),
hpi_color=(1., 0., 1.),
extra_color=(1., 1., 1.),
eeg_color=(1., 0.596, 0.588), eegp_color=(0.839, 0.15, 0.16),
ecog_color=(1., 1., 1.),
seeg_color=(1., 1., .3),
fnirs_color=(1., .647, 0.),
source_color=(1., .05, 0.),
detector_color=(.3, .15, .15),
lpa_color=(1., 0., 0.),
nasion_color=(0., 1., 0.),
rpa_color=(0., 0., 1.),
),
noise_std=dict(grad=5e-13, mag=20e-15, eeg=0.2e-6),
eloreta_options=dict(eps=1e-6, max_iter=20, force_equal=False),
depth_mne=dict(exp=0.8, limit=10., limit_depth_chs=True,
combine_xyz='spectral', allow_fixed_depth=False),
depth_sparse=dict(exp=0.8, limit=None, limit_depth_chs='whiten',
combine_xyz='fro', allow_fixed_depth=True),
)
def _handle_default(k, v=None):
"""Avoid dicts as default keyword arguments.
Use this function instead to resolve default dict values. Example usage::
scalings = _handle_default('scalings', scalings)
"""
this_mapping = deepcopy(DEFAULTS[k])
if v is not None:
if isinstance(v, dict):
this_mapping.update(v)
else:
for key in this_mapping.keys():
this_mapping[key] = v
return this_mapping
HEAD_SIZE_DEFAULT = 0.095 # in [m]
_BORDER_DEFAULT = 'mean'
_EXTRAPOLATE_DEFAULT = 'auto'