forked from tranluan/Nonlinear_Face_3DMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ops.py
262 lines (202 loc) · 10 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import math
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
from utils import *
def make_parallel(fn, num_gpus, **kwargs):
print("Making make_parallel for %d gpu(s)" % num_gpus)
in_splits = {}
for k, v in kwargs.items():
if type(v) == list:
in_splits[k] = zip(*[iter(v)]*( int( len(v) / num_gpus ) ))
else:
in_splits[k] = tf.split(v, num_gpus)
out_split = []
for i in range(num_gpus):
with tf.device(tf.DeviceSpec(device_type="GPU", device_index=i)):
with tf.variable_scope(tf.get_variable_scope(), reuse= i!=0):# tf.AUTO_REUSE):
out_split.append(fn(**{k : v[i] for k, v in in_splits.items()}))
output_num = len(out_split[0])
output = []
for i in range(output_num):
output.append([])
for j in range(num_gpus):
output[i].append(out_split[j][i])
return output
class batch_norm(object):
"""Code modification of http://stackoverflow.com/a/33950177"""
def __init__(self, epsilon=1e-5, momentum = 0.9, name="batch_norm"):
with tf.variable_scope(name):
self.epsilon = epsilon
self.momentum = momentum
self.name = name
def __call__(self, x, train=True, reuse=False, trainable=True ):
return tf.contrib.layers.batch_norm(x,
decay=self.momentum,
updates_collections=None,
epsilon=self.epsilon,
fused=True,
scale=True,
trainable=trainable,
reuse = reuse,
is_training=train,
scope=self.name)
def get_shape(tensor):
static_shape = tensor.shape.as_list()
dynamic_shape = tf.unstack(tf.shape(tensor))
dims = [s[1] if s[0] is None else s[0]
for s in zip(static_shape, dynamic_shape)]
return dims
def binary_cross_entropy(preds, targets, name=None):
"""Computes binary cross entropy given `preds`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Args:
preds: A `Tensor` of type `float32` or `float64`.
targets: A `Tensor` of the same type and shape as `preds`.
"""
eps = 1e-12
with ops.op_scope([preds, targets], name, "bce_loss") as name:
preds = ops.convert_to_tensor(preds, name="preds")
targets = ops.convert_to_tensor(targets, name="targets")
return tf.reduce_mean(-(targets * tf.log(preds + eps) +
(1. - targets) * tf.log(1. - preds + eps)))
def conv_cond_concat(x, y):
"""Concatenate conditioning vector on feature map axis."""
x_shapes = x.get_shape()
y_shapes = y.get_shape()
return tf.concat(axis=3, values=[x, y*tf.ones([x_shapes[0], x_shapes[1], x_shapes[2], y_shapes[3]])])
def conv2d(input_, output_dim,
k_h=3, k_w=3, d_h=2, d_w=2, use_bias=True, stddev=0.02,
name="conv2d", reuse = False):
with tf.variable_scope(name, reuse = reuse):
w = tf.get_variable('w', [k_h, k_w, input_.get_shape()[-1], output_dim],
initializer=tf.truncated_normal_initializer(stddev=stddev))
conv = tf.nn.conv2d(input_, w, strides=[1, d_h, d_w, 1], padding='SAME')
if use_bias:
biases = tf.get_variable('biases', [output_dim], initializer=tf.constant_initializer(0.0))
conv = tf.reshape(tf.nn.bias_add(conv, biases), get_shape(conv))
return conv
def deconv2d(input_, output_shape,
kernel_size=(3,3), strides=(2,2), stddev=0.02, use_bias = True,
name="deconv2d", with_w=False, reuse = False):
'''
with tf.variable_scope(name, reuse = reuse):
# filter : [height, width, output_channels, in_channels]
w = tf.get_variable('w', [k_h, k_h, output_shape[-1], input_.get_shape()[-1]],
initializer=tf.random_normal_initializer(stddev=stddev))
try:
deconv = tf.nn.conv2d_transpose(input_, w, output_shape=output_shape,
strides=[1, d_h, d_w, 1])
# Support for verisons of TensorFlow before 0.7.0
except AttributeError:
deconv = tf.nn.deconv2d(input_, w, output_shape=output_shape,
strides=[1, d_h, d_w, 1])
biases = tf.get_variable('biases', [output_shape[-1]], initializer=tf.constant_initializer(0.0))
deconv = tf.reshape(tf.nn.bias_add(deconv, biases), deconv.get_shape())
if with_w:
return deconv, w, biases
else:
return deconv
'''
if type(output_shape) == list():
output_shape = output_shape[-1]
return tf.layers.conv2d_transpose(input_, output_shape, kernel_size, strides, padding='SAME', data_format='channels_last', activation=None, use_bias=use_bias,
kernel_initializer=tf.random_normal_initializer(stddev=stddev), bias_initializer=tf.zeros_initializer(),
trainable=True, name=name, reuse=reuse)
def maxpool2d(x, k=2, padding='VALID'):
return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding=padding)
def prelu(x, name, reuse = False):
shape = x.get_shape().as_list()[-1:]
with tf.variable_scope(name, reuse = reuse):
alphas = tf.get_variable('alpha', shape, tf.float32,
initializer=tf.constant_initializer(value=0.2))
return tf.nn.relu(x) + tf.multiply(alphas, (x - tf.abs(x))) * 0.5
def relu(x, name='relu'):
return tf.nn.relu(x, name)
def lrelu(x, leak=0.2, name="lrelu"):
return tf.maximum(x, leak*x)
def elu(x, name='elu'):
return tf.nn.elu(x, name)
def linear(input_, output_size, scope="Linear", reuse = False, stddev=0.02, bias_start=0.0, with_w=False):
shape = input_.get_shape().as_list()
print(shape)
with tf.variable_scope(scope or "Linear", reuse = reuse):
matrix = tf.get_variable("Matrix", [shape[1], output_size], tf.float32,
tf.random_normal_initializer(stddev=stddev))
bias = tf.get_variable("bias", [output_size],
initializer=tf.constant_initializer(bias_start))
if with_w:
return tf.matmul(input_, matrix) + bias, matrix, bias
else:
return tf.matmul(input_, matrix) + bias
def triplet_loss(anchor_output, positive_output, negative_output, margin = 0.2 ):
d_pos = tf.reduce_mean(tf.square(anchor_output - positive_output), 1)
d_neg = tf.reduce_mean(tf.square(anchor_output - negative_output), 1)
loss = tf.maximum(0., margin + d_pos - d_neg)
return loss
def cosine_loss(anchor_output, positive_output):
anchor_output_norm = tf.nn.l2_normalize(anchor_output, 1)
positive_output_norm = tf.nn.l2_normalize(positive_output, 1)
loss = 1 - tf.reduce_sum(tf.multiply(anchor_output_norm, positive_output_norm), 1)
return loss
def cosine_triplet_loss(anchor_output, positive_output, negative_output, margin = 0.2 ):
anchor_output_norm = tf.nn.l2_normalize(anchor_output, 1)
positive_output_norm = tf.nn.l2_normalize(positive_output, 1)
negative_output_norm = tf.nn.l2_normalize(negative_output, 1)
sim_pos = tf.reduce_sum(tf.multiply(anchor_output_norm, positive_output_norm), 1)
sim_neg = tf.reduce_sum(tf.multiply(anchor_output_norm, negative_output_norm), 1)
loss = tf.maximum(0., margin - sim_pos + sim_neg)
return loss
def norm_loss(predictions, labels, mask = None, loss_type = 'l1', reduce_mean = True, p=1):
from tensorflow.python.ops import array_ops
assert (loss_type in ['l1', 'l2', 'l2,1']), "Suporting loss type is ['l1', 'l2', 'l2,1']"
diff = predictions - labels
if mask != None:
diff = tf.multiply(diff, mask)
inputs_shape = array_ops.shape(diff)
if loss_type == 'l1':
loss = tf.reduce_sum( tf.abs(diff) )
elif loss_type == 'l2':
loss = tf.nn.l2_loss(diff)
elif loss_type == 'l2,1':
#inputs_rank = tf.cast(labels.get_shape().ndims, tf.int32)
#spatial_dims = array_ops.slice(inputs_shape, [1], [2])
#batch_dim = array_ops.slice(inputs_shape, [0], [1])
loss = tf.sqrt( tf.reduce_sum ( tf.square (diff) + 1e-16, axis = [-1] ) )
if p!= 1:
loss = tf.pow(loss, p)
loss = tf.reduce_sum(loss)
if reduce_mean:
numel = tf.cast(tf.reduce_prod(inputs_shape), diff.dtype)
loss = tf.div(loss, numel)
return loss
def total_variation(images, mask, name=None):
ndims = images.get_shape().ndims
if ndims == 3:
# The input is a single image with shape [height, width, channels].
# Calculate the difference of neighboring pixel-values.
# The images are shifted one pixel along the height and width by slicing.
pixel_dif1 = images[1:, :, :] - images[:-1, :, :]
pixel_dif2 = images[:, 1:, :] - images[:, :-1, :]
# Sum for all axis. (None is an alias for all axis.)
sum_axis = None
elif ndims == 4:
# The input is a batch of images with shape:
# [batch, height, width, channels].
# Calculate the difference of neighboring pixel-values.
# The images are shifted one pixel along the height and width by slicing.
pixel_dif1 = images[:, 1:, :, :] - images[:, :-1, :, :]
pixel_dif2 = images[:, :, 1:, :] - images[:, :, :-1, :]
# Only sum for the last 3 axis.
# This results in a 1-D tensor with the total variation for each image.
sum_axis = [1, 2, 3]
else:
raise ValueError('\'images\' must be either 3 or 4-dimensional.')
pixel_dif1 = tf.multiply(pixel_dif1, mask[:, 1:, :, :])
pixel_dif2 = tf.multiply(pixel_dif2, mask[:, :, 1:, :])
# Calculate the total variation by taking the absolute value of the
# pixel-differences and summing over the appropriate axis.
tot_var = (tf.reduce_sum(tf.abs(pixel_dif1), axis=sum_axis) +
tf.reduce_sum(tf.abs(pixel_dif2), axis=sum_axis))
return tot_var