forked from Langboat/Mengzi3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
finetune.py
698 lines (624 loc) · 25.9 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The Langboat Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...)
on a text file or a dataset without using HuggingFace Trainer.
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=text-generation
"""
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
import argparse
import datasets
import json
import logging
import math
import mmap
import numpy as np
import os
import random
import signal
import sys
import struct
import time
import torch
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed, InitProcessGroupKwargs
from datetime import timedelta
from transformers import (SchedulerType, MODEL_MAPPING, default_data_collator, get_scheduler, AutoTokenizer,
AutoModelForCausalLM)
from torch.utils.data import Dataset, DataLoader
from tqdm.auto import tqdm
from functools import lru_cache
from plugins.indexed_dataset import MMapIndexedDataset, MMapIndexedDatasetBuilder, make_builder
# use tf32 insteal of fp32
torch.backends.cuda.matmul.allow_tf32 = True
logger = get_logger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
_IGNORE_ID = -100
def parse_args():
parser = argparse.ArgumentParser(
description="Finetune a transformers model on a causal language modeling task"
)
parser.add_argument(
"--dataset_name",
type=str,
default=None,
help="The name of the dataset to use (via the datasets library).", )
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The configuration name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--train_file",
type=str,
default=None,
help="A csv or a json file containing the training data.")
parser.add_argument(
"--validation_file",
type=str,
default=None,
help="A csv or a json file containing the validation data.")
parser.add_argument(
"--validation_split_percentage",
default=5,
help="The percentage of the train set used as validation set in case there's no validation split",
)
parser.add_argument(
"--finetune_embedding_layer",
action="store_true",
help="If passed, will only finetune embeddign weights and freezing the rest layers"
)
parser.add_argument(
"--model_name_or_path",
type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.",
required=False, )
parser.add_argument(
"--config_name",
type=str,
default=None,
help="Pretrained config name or path if not the same as model_name", )
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--use_fast_tokenizer",
action="store_true",
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=8,
help="Batch size (per device) for the training dataloader.", )
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=8,
help="Batch size (per device) for the evaluation dataloader.", )
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument(
"--num_train_epochs",
type=int,
default=3,
help="Total number of training epochs to perform.")
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--world_size",
type=int,
default=1,
help="Number of gpus for running.", )
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear",
help="The scheduler type to use.",
choices=[
"linear", "cosine", "cosine_with_restarts", "polynomial",
"constant", "constant_with_warmup"
], )
parser.add_argument(
"--num_warmup_steps",
type=int,
default=0,
help="Number of steps for the warmup in the lr scheduler.")
parser.add_argument(
"--output_dir",
type=str,
default=None,
help="Where to store the final model.")
parser.add_argument(
"--seed",
type=int,
default=None,
help="A seed for reproducible training.")
parser.add_argument(
"--model_type",
type=str,
default=None,
help="Model type to use if training from scratch.",
choices=MODEL_TYPES, )
parser.add_argument(
"--block_size",
type=int,
default=None,
help=(
"Optional input sequence length after tokenization. The training dataset will be truncated in block of"
" this size for training. Default to the model max input length for single sentence inputs (take into"
" account special tokens)."), )
parser.add_argument(
"--preprocessing_num_workers",
type=int,
default=None,
help="The number of processes to use for the preprocessing.", )
parser.add_argument(
"--overwrite_cache",
action="store_true",
help="Overwrite the cached training and evaluation sets")
parser.add_argument(
"--no_keep_linebreaks",
action="store_true",
help="Do not keep line breaks when using TXT files.")
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether or not to push the model to the Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
help="The name of the repository to keep in sync with the local `output_dir`."
)
parser.add_argument(
"--hub_token",
type=str,
help="The token to use to push to the Model Hub.")
parser.add_argument(
"--checkpointing_steps",
type=float,
default=0.05,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--warmup_ratio",
type=float,
default=0.05,
help="Ratio of warmup steps.", )
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.", )
parser.add_argument(
"--with_tracking",
action="store_true",
help="Whether to enable experiment trackers for logging.", )
parser.add_argument(
"--enable_recompute",
action="store_true",
help="Whether to enable recompute, which can save the needed cuda-memory to speedup training.",
)
parser.add_argument(
"--enable_flash_attn",
action="store_true",
help="Whether to enable flash_attn, which can save the needed cuda-memory to speedup training.",
)
parser.add_argument(
"--report_to",
type=str,
default="all",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
' `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations.'
"Only applicable when `--with_tracking` is passed."), )
parser.add_argument(
'--cache_dir',
type=str, )
parser.add_argument(
'--report_to_dir',
type=str, )
args = parser.parse_args()
# Sanity checks
if args.dataset_name is None and args.train_file is None and args.validation_file is None:
# raise ValueError("Need either a dataset name or a training/validation file.")
pass
else:
if args.train_file is not None:
extension = args.train_file.split(".")[-1]
assert extension in [
"csv", "json", "txt", 'jsonl'
], "`train_file` should be a csv, json, jsonl or txt file."
if args.validation_file is not None:
extension = args.validation_file.split(".")[-1]
assert extension in [
"csv", "json", "txt", 'jsonl'
], "`validation_file` should be a csv, json, jsonl or txt file."
if args.push_to_hub:
assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed."
return args
def get_num_lines(file_path):
fp = open(file_path, "r+")
buf = mmap.mmap(fp.fileno(), 0)
lines = 0
while buf.readline():
lines += 1
return lines
class SFTDataset(Dataset):
def __init__(self, indexed_dataset):
self.indexed_dataset = indexed_dataset
def __len__(self):
return len(self.indexed_dataset)
def __getitem__(self, idx):
record = self.indexed_dataset[idx].tolist()
record_len = len(record)
input_ids = record[:int(record_len / 2)]
labels = record[int(record_len / 2):]
return {'input_ids': input_ids, 'labels': labels}
class Encoder(object):
def __init__(self, path, max_length=4096):
self.path = path
self.tokenizer = AutoTokenizer.from_pretrained(
self.path, add_bos_token=False, add_eos_token=False)
self.max_length = max_length
self.drop_count = 0
def concat_encode(self, fin, file_path, stop_token_ids):
input_ids, labels = [], []
input_ids_temp, labels_temp = [], []
for line in tqdm(fin, total=get_num_lines(file_path)):
record = json.loads(line)
turns = record['conversation']
source = record['source'] if 'source' in record else ''
for i in range(len(turns)):
text = turns[i]['text'].strip()
if turns[i]['role'] == 'human':
text = f"### 指令:\n{text}"
text_ids = self.tokenizer(text)['input_ids']
if text_ids[0] == 29871:
text_ids = text_ids[1:]
text_ids = [self.tokenizer.bos_token_id] + text_ids + [self.tokenizer.eos_token_id]
input_ids_temp.extend(text_ids)
text_labels = [_IGNORE_ID] * len(text_ids)
labels_temp.extend(text_labels)
elif turns[i]['role'] == 'assistant':
text = f"### 回复:\n{text}"
text_ids = self.tokenizer(text)['input_ids']
if text_ids[0] == 29871:
text_ids = text_ids[1:]
text_ids = [self.tokenizer.bos_token_id] + text_ids + [self.tokenizer.eos_token_id]
input_ids_temp.extend(text_ids)
text_labels = text_ids.copy()
labels_temp.extend(
[text_label if text_label not in stop_token_ids else _IGNORE_ID for text_label in text_labels])
if len(input_ids_temp) > self.max_length: # 整条对话超过最大长度的情况
print(text)
print('整条对话超出最大长度')
print(len(text), len(input_ids_temp), self.max_length)
# 丢弃本条
self.drop_count += 1
input_ids_temp, labels_temp = [], []
continue
if len(input_ids) + len(input_ids_temp) > self.max_length:
input_ids = [self.tokenizer.bos_token_id] * (self.max_length - len(input_ids)) + input_ids
labels = [_IGNORE_ID] * (self.max_length - len(labels)) + labels
yield input_ids, labels, False
input_ids, labels = [], []
if not input_ids:
input_ids, labels = [], []
input_ids.extend(input_ids_temp)
labels.extend(labels_temp)
if len(labels) > self.max_length:
print('超出最大长度')
self.drop_count += 1
input_ids, labels = [], []
input_ids_temp, labels_temp = [], []
print('超出最大长度条数:', self.drop_count)
input_ids = [self.tokenizer.bos_token_id] * (self.max_length - len(input_ids)) + input_ids
labels = [_IGNORE_ID] * (self.max_length - len(labels)) + labels
yield input_ids, labels, False
def preprocess_data(args, key, level, dataset_impl='mmap'):
dataset_path = args.train_file
tokenizer_path = args.tokenizer_name
chunk_size = args.block_size
startup_start = time.time()
encoder = Encoder(tokenizer_path, chunk_size)
output_bin_files = {}
output_idx_files = {}
builders = {}
output_bin_files[key] = args.dataset_name + '.bin'
output_idx_files[key] = args.dataset_name + '.idx'
builders[key] = make_builder(
output_bin_files[key],
impl=dataset_impl,
vocab_size=len(encoder.tokenizer) + 1)
startup_end = time.time()
print("Time to startup:", startup_end - startup_start)
stop_token_ids = []
with open(dataset_path, "r", encoding='utf-8') as fin:
for input_ids, labels, is_truncated in encoder.concat_encode(fin, dataset_path, stop_token_ids):
assert len(input_ids) == len(
labels), "input_ids len(%d), labels len(%d)" % (len(input_ids), len(labels))
assert len(input_ids) == chunk_size
if not is_truncated:
insert_ids = input_ids.copy()
insert_ids.extend(labels)
builders[key].add_item(torch.IntTensor(insert_ids))
builders[key].end_document()
print("Done! Now finalizing.")
builders[key].finalize(output_idx_files[key])
def main():
args = parse_args()
kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=180000))
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
kwargs_handlers=[kwargs],
log_with=args.report_to,
mixed_precision='bf16',
project_dir=args.report_to_dir)
# preprocess data
level = "document"
key = "text"
output_prefix = 'example'
args.dataset_name = "{}_{}_{}".format(output_prefix, key, level)
if accelerator.is_main_process:
preprocess_data(args, key, level)
accelerator.wait_for_everyone()
if args.report_to != "" and args.report_to is not None:
_train_config = {
"learning_rate": args.learning_rate,
"weight_decay": args.weight_decay,
"num_warmup_steps": args.num_warmup_steps
}
accelerator.init_trackers(
config=_train_config, project_name="mengzi2_13b_finetune")
accelerator.state.deepspeed_plugin.deepspeed_config[
'train_micro_batch_size_per_gpu'] = args.per_device_train_batch_size
accelerator.state.deepspeed_plugin.deepspeed_config[
'train_batch_size'] = args.per_device_train_batch_size * args.world_size * args.gradient_accumulation_steps
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO, )
logger.info(accelerator.state, main_process_only=True)
logger.info(f'Args: {args}')
# only local main process can print warnings
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
idxed_train_dataset = MMapIndexedDataset(args.dataset_name)
train_dataset = SFTDataset(idxed_train_dataset)
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name, use_fast=args.use_fast_tokenizer)
elif args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path, use_fast=args.use_fast_tokenizer)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
if args.model_name_or_path:
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, trust_remote_code=True)
else:
raise ValueError("args.model_name_or_path can not be None")
logger.info(model)
logger.info(model.named_parameters())
# Log a few random samples from the training set:
for index in random.sample(range(len(train_dataset)), min(3, len(train_dataset))):
logger.info(
f"Sample {index} of the training set: {train_dataset[index]}.")
# DataLoaders creation:
train_dataloader = DataLoader(
train_dataset,
shuffle=True,
collate_fn=default_data_collator,
batch_size=args.per_device_train_batch_size)
## add recompute
if args.enable_recompute:
model.gradient_checkpointing_enable()
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "layer_norm.weight"]
optimizer_grouped_parameters = [
{
"params": [
p for n, p in model.named_parameters()
if not any(nd in n for nd in no_decay)
],
"weight_decay": args.weight_decay,
"lr": args.learning_rate
},
{
"params": [
p for n, p in model.named_parameters()
if any(nd in n for nd in no_decay)
],
"weight_decay": 0.0,
"lr": args.learning_rate
}
]
logger.info('optimizer:')
logger.info(optimizer_grouped_parameters)
optimizer = torch.optim.AdamW(optimizer_grouped_parameters)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps *
args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps *
args.gradient_accumulation_steps
)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, lr_scheduler)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps /
num_update_steps_per_epoch)
# Figure out how many steps we should save the Accelerator states
checkpointing_steps = args.checkpointing_steps
if checkpointing_steps is None:
checkpointing_steps = 0.05
checkpointing_steps = int(len(train_dataloader) * checkpointing_steps)
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
if accelerator.is_main_process:
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Num steps per epoch = {len(train_dataloader)}")
logger.info(
f" Instantaneous batch size per device = {args.per_device_train_batch_size}"
)
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
)
logger.info(
f" Gradient Accumulation steps = {args.gradient_accumulation_steps}"
)
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(
range(args.max_train_steps),
disable=not accelerator.is_local_main_process)
completed_steps = 0
starting_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
accelerator.print(
f"Resumed from checkpoint: {args.resume_from_checkpoint}")
accelerator.load_state(args.resume_from_checkpoint)
path = os.path.basename(args.resume_from_checkpoint)
training_difference = os.path.splitext(path)[0]
if "epoch" in training_difference:
starting_epoch = int(training_difference.replace("epoch_", "")) + 1
resume_step = None
else:
print(f'training_difference -> {training_difference}', flush=True)
# need to multiply `gradient_accumulation_steps` to reflect real steps
resume_step = int(training_difference.replace(
"step_", "")) * args.gradient_accumulation_steps
starting_epoch = resume_step // len(train_dataloader)
resume_step -= starting_epoch * len(train_dataloader)
# update the progress_bar if load from checkpoint
progress_bar.update(starting_epoch * num_update_steps_per_epoch)
completed_steps = starting_epoch * num_update_steps_per_epoch
total_loss = 0
for epoch in range(starting_epoch, args.num_train_epochs):
model.train()
for step, batch in enumerate(train_dataloader):
# We need to skip steps until we reach the resumed step
if args.resume_from_checkpoint and epoch == starting_epoch:
if resume_step is not None and step < resume_step:
if step % args.gradient_accumulation_steps == 0:
progress_bar.update(1)
completed_steps += 1
continue
with accelerator.accumulate(model):
# print(f'batch -> {batch}')
outputs = model(**batch)
loss = outputs.loss
# We keep track of the loss at each epoch
if args.report_to != "" and args.report_to is not None:
if accelerator.is_main_process:
total_loss = loss.detach().float().item()
accelerator.log({
"tran_loss": total_loss,
"epoch": epoch,
"step": step,
"learning_rate": lr_scheduler.get_last_lr()[0]
}, step=completed_steps)
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
completed_steps += 1
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
output_dir = f"step_{completed_steps }"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
if completed_steps >= args.max_train_steps:
break
if args.report_to != "" and args.report_to is not None:
accelerator.end_training()
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
args.output_dir,
is_main_process=accelerator.is_main_process,
save_function=accelerator.save)
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
if __name__ == "__main__":
main()