forked from chiphuyen/stanford-tensorflow-tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
07_convnet_mnist.py
210 lines (188 loc) · 8.02 KB
/
07_convnet_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
""" Using convolutional net on MNIST dataset of handwritten digits
MNIST dataset: http://yann.lecun.com/exdb/mnist/
CS 20: "TensorFlow for Deep Learning Research"
cs20.stanford.edu
Chip Huyen ([email protected])
Lecture 07
"""
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import time
import tensorflow as tf
import utils
def conv_relu(inputs, filters, k_size, stride, padding, scope_name):
'''
A method that does convolution + relu on inputs
'''
with tf.variable_scope(scope_name, reuse=tf.AUTO_REUSE) as scope:
in_channels = inputs.shape[-1]
kernel = tf.get_variable('kernel',
[k_size, k_size, in_channels, filters],
initializer=tf.truncated_normal_initializer())
biases = tf.get_variable('biases',
[filters],
initializer=tf.random_normal_initializer())
conv = tf.nn.conv2d(inputs, kernel, strides=[1, stride, stride, 1], padding=padding)
return tf.nn.relu(conv + biases, name=scope.name)
def maxpool(inputs, ksize, stride, padding='VALID', scope_name='pool'):
'''A method that does max pooling on inputs'''
with tf.variable_scope(scope_name, reuse=tf.AUTO_REUSE) as scope:
pool = tf.nn.max_pool(inputs,
ksize=[1, ksize, ksize, 1],
strides=[1, stride, stride, 1],
padding=padding)
return pool
def fully_connected(inputs, out_dim, scope_name='fc'):
'''
A fully connected linear layer on inputs
'''
with tf.variable_scope(scope_name, reuse=tf.AUTO_REUSE) as scope:
in_dim = inputs.shape[-1]
w = tf.get_variable('weights', [in_dim, out_dim],
initializer=tf.truncated_normal_initializer())
b = tf.get_variable('biases', [out_dim],
initializer=tf.constant_initializer(0.0))
out = tf.matmul(inputs, w) + b
return out
class ConvNet(object):
def __init__(self):
self.lr = 0.001
self.batch_size = 128
self.keep_prob = tf.constant(0.75)
self.gstep = tf.Variable(0, dtype=tf.int32,
trainable=False, name='global_step')
self.n_classes = 10
self.skip_step = 20
self.n_test = 10000
self.training = True
def get_data(self):
with tf.name_scope('data'):
train_data, test_data = utils.get_mnist_dataset(self.batch_size)
iterator = tf.data.Iterator.from_structure(train_data.output_types,
train_data.output_shapes)
img, self.label = iterator.get_next()
self.img = tf.reshape(img, shape=[-1, 28, 28, 1])
# reshape the image to make it work with tf.nn.conv2d
self.train_init = iterator.make_initializer(train_data) # initializer for train_data
self.test_init = iterator.make_initializer(test_data) # initializer for train_data
def inference(self):
conv1 = conv_relu(inputs=self.img,
filters=32,
k_size=5,
stride=1,
padding='SAME',
scope_name='conv1')
pool1 = maxpool(conv1, 2, 2, 'VALID', 'pool1')
conv2 = conv_relu(inputs=pool1,
filters=64,
k_size=5,
stride=1,
padding='SAME',
scope_name='conv2')
pool2 = maxpool(conv2, 2, 2, 'VALID', 'pool2')
feature_dim = pool2.shape[1] * pool2.shape[2] * pool2.shape[3]
pool2 = tf.reshape(pool2, [-1, feature_dim])
fc = fully_connected(pool2, 1024, 'fc')
dropout = tf.nn.dropout(tf.nn.relu(fc), self.keep_prob, name='relu_dropout')
self.logits = fully_connected(dropout, self.n_classes, 'logits')
def loss(self):
'''
define loss function
use softmax cross entropy with logits as the loss function
compute mean cross entropy, softmax is applied internally
'''
#
with tf.name_scope('loss'):
entropy = tf.nn.softmax_cross_entropy_with_logits(labels=self.label, logits=self.logits)
self.loss = tf.reduce_mean(entropy, name='loss')
def optimize(self):
'''
Define training op
using Adam Gradient Descent to minimize cost
'''
self.opt = tf.train.AdamOptimizer(self.lr).minimize(self.loss,
global_step=self.gstep)
def summary(self):
'''
Create summaries to write on TensorBoard
'''
with tf.name_scope('summaries'):
tf.summary.scalar('loss', self.loss)
tf.summary.scalar('accuracy', self.accuracy)
tf.summary.histogram('histogram loss', self.loss)
self.summary_op = tf.summary.merge_all()
def eval(self):
'''
Count the number of right predictions in a batch
'''
with tf.name_scope('predict'):
preds = tf.nn.softmax(self.logits)
correct_preds = tf.equal(tf.argmax(preds, 1), tf.argmax(self.label, 1))
self.accuracy = tf.reduce_sum(tf.cast(correct_preds, tf.float32))
def build(self):
'''
Build the computation graph
'''
self.get_data()
self.inference()
self.loss()
self.optimize()
self.eval()
self.summary()
def train_one_epoch(self, sess, saver, init, writer, epoch, step):
start_time = time.time()
sess.run(init)
self.training = True
total_loss = 0
n_batches = 0
try:
while True:
_, l, summaries = sess.run([self.opt, self.loss, self.summary_op])
writer.add_summary(summaries, global_step=step)
if (step + 1) % self.skip_step == 0:
print('Loss at step {0}: {1}'.format(step, l))
step += 1
total_loss += l
n_batches += 1
except tf.errors.OutOfRangeError:
pass
saver.save(sess, 'checkpoints/convnet_mnist/mnist-convnet', step)
print('Average loss at epoch {0}: {1}'.format(epoch, total_loss/n_batches))
print('Took: {0} seconds'.format(time.time() - start_time))
return step
def eval_once(self, sess, init, writer, epoch, step):
start_time = time.time()
sess.run(init)
self.training = False
total_correct_preds = 0
try:
while True:
accuracy_batch, summaries = sess.run([self.accuracy, self.summary_op])
writer.add_summary(summaries, global_step=step)
total_correct_preds += accuracy_batch
except tf.errors.OutOfRangeError:
pass
print('Accuracy at epoch {0}: {1} '.format(epoch, total_correct_preds/self.n_test))
print('Took: {0} seconds'.format(time.time() - start_time))
def train(self, n_epochs):
'''
The train function alternates between training one epoch and evaluating
'''
utils.safe_mkdir('checkpoints')
utils.safe_mkdir('checkpoints/convnet_mnist')
writer = tf.summary.FileWriter('./graphs/convnet', tf.get_default_graph())
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
ckpt = tf.train.get_checkpoint_state(os.path.dirname('checkpoints/convnet_mnist/checkpoint'))
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
step = self.gstep.eval()
for epoch in range(n_epochs):
step = self.train_one_epoch(sess, saver, self.train_init, writer, epoch, step)
self.eval_once(sess, self.test_init, writer, epoch, step)
writer.close()
if __name__ == '__main__':
model = ConvNet()
model.build()
model.train(n_epochs=30)