-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathshake_drop.py
178 lines (153 loc) · 5.69 KB
/
shake_drop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Builds the Shake-Shake Model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import custom_ops as ops
import tensorflow as tf
def round_int(x):
"""Rounds `x` and then converts to an int."""
return int(math.floor(x + 0.5))
def shortcut(x, output_filters, stride):
"""Applies strided avg pool or zero padding to make output_filters match x."""
num_filters = int(x.shape[3])
if stride == 2:
x = ops.avg_pool(x, 2, stride=stride, padding='SAME')
if num_filters != output_filters:
diff = output_filters - num_filters
assert diff > 0
# Zero padd diff zeros
padding = [[0, 0], [0, 0], [0, 0], [0, diff]]
x = tf.pad(x, padding)
return x
def calc_prob(curr_layer, total_layers, p_l):
"""Calculates drop prob depending on the current layer."""
return 1 - (float(curr_layer) / total_layers) * p_l
def bottleneck_layer(x, n, stride, prob, is_training, alpha, beta):
"""Bottleneck layer for shake drop model."""
assert alpha[1] > alpha[0]
assert beta[1] > beta[0]
with tf.variable_scope('bottleneck_{}'.format(prob)):
input_layer = x
x = ops.batch_norm(x, scope='bn_1_pre')
x = ops.conv2d(x, n, 1, scope='1x1_conv_contract')
x = ops.batch_norm(x, scope='bn_1_post')
x = tf.nn.relu(x)
x = ops.conv2d(x, n, 3, stride=stride, scope='3x3')
x = ops.batch_norm(x, scope='bn_2')
x = tf.nn.relu(x)
x = ops.conv2d(x, n * 4, 1, scope='1x1_conv_expand')
x = ops.batch_norm(x, scope='bn_3')
# Apply regularization here
# Sample bernoulli with prob
if is_training:
batch_size = tf.shape(x)[0]
bern_shape = [batch_size, 1, 1, 1]
random_tensor = prob
random_tensor += tf.random_uniform(bern_shape, dtype=tf.float32)
binary_tensor = tf.floor(random_tensor)
alpha_values = tf.random_uniform(
[batch_size, 1, 1, 1], minval=alpha[0], maxval=alpha[1],
dtype=tf.float32)
beta_values = tf.random_uniform(
[batch_size, 1, 1, 1], minval=beta[0], maxval=beta[1],
dtype=tf.float32)
rand_forward = (
binary_tensor + alpha_values - binary_tensor * alpha_values)
rand_backward = (
binary_tensor + beta_values - binary_tensor * beta_values)
x = x * rand_backward + tf.stop_gradient(x * rand_forward -
x * rand_backward)
else:
expected_alpha = (alpha[1] + alpha[0])/2
# prob is the expectation of the bernoulli variable
x = (prob + expected_alpha - prob * expected_alpha) * x
res = shortcut(input_layer, n * 4, stride)
return x + res
def build_shake_drop_model(images, num_classes, is_training):
"""Builds the PyramidNet Shake-Drop model.
Build the PyramidNet Shake-Drop model from https://arxiv.org/abs/1802.02375.
Args:
images: Tensor of images that will be fed into the Wide ResNet Model.
num_classes: Number of classed that the model needs to predict.
is_training: Is the model training or not.
Returns:
The logits of the PyramidNet Shake-Drop model.
"""
# ShakeDrop Hparams
p_l = 0.5
alpha_shake = [-1, 1]
beta_shake = [0, 1]
# PyramidNet Hparams
alpha = 200
depth = 272
# This is for the bottleneck architecture specifically
n = int((depth - 2) / 9)
start_channel = 16
add_channel = alpha / (3 * n)
# Building the models
x = images
x = ops.conv2d(x, 16, 3, scope='init_conv')
x = ops.batch_norm(x, scope='init_bn')
layer_num = 1
total_layers = n * 3
start_channel += add_channel
prob = calc_prob(layer_num, total_layers, p_l)
x = bottleneck_layer(
x, round_int(start_channel), 1, prob, is_training, alpha_shake,
beta_shake)
layer_num += 1
for _ in range(1, n):
start_channel += add_channel
prob = calc_prob(layer_num, total_layers, p_l)
x = bottleneck_layer(
x, round_int(start_channel), 1, prob, is_training, alpha_shake,
beta_shake)
layer_num += 1
start_channel += add_channel
prob = calc_prob(layer_num, total_layers, p_l)
x = bottleneck_layer(
x, round_int(start_channel), 2, prob, is_training, alpha_shake,
beta_shake)
layer_num += 1
for _ in range(1, n):
start_channel += add_channel
prob = calc_prob(layer_num, total_layers, p_l)
x = bottleneck_layer(
x, round_int(start_channel), 1, prob, is_training, alpha_shake,
beta_shake)
layer_num += 1
start_channel += add_channel
prob = calc_prob(layer_num, total_layers, p_l)
x = bottleneck_layer(
x, round_int(start_channel), 2, prob, is_training, alpha_shake,
beta_shake)
layer_num += 1
for _ in range(1, n):
start_channel += add_channel
prob = calc_prob(layer_num, total_layers, p_l)
x = bottleneck_layer(
x, round_int(start_channel), 1, prob, is_training, alpha_shake,
beta_shake)
layer_num += 1
assert layer_num - 1 == total_layers
x = ops.batch_norm(x, scope='final_bn')
x = tf.nn.relu(x)
x = ops.global_avg_pool(x)
# Fully connected
logits = ops.fc(x, num_classes)
return logits