-
Notifications
You must be signed in to change notification settings - Fork 49
/
ap.h
697 lines (588 loc) · 21.6 KB
/
ap.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
/*************************************************************************
AP library 1.3
Copyright (c) 2003-2009 Sergey Bochkanov (ALGLIB project).
>>> LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses
>>> END OF LICENSE >>>
*************************************************************************/
#ifndef AP_H
#define AP_H
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <math.h>
#ifdef __BORLANDC__
#include <list.h>
#include <vector.h>
#else
#include <list>
#include <vector>
#endif
/********************************************************************
Array bounds check
********************************************************************/
#define NO_AP_ASSERT
#ifndef AP_ASSERT //
#define NO_AP_ASSERT // This code avoids definition of the
#endif // both AP_ASSERT and NO_AP_ASSERT symbols
#ifdef NO_AP_ASSERT //
#ifdef AP_ASSERT //
#undef NO_AP_ASSERT //
#endif //
#endif //
/********************************************************************
Current environment.
********************************************************************/
#ifndef AP_WIN32
#ifndef AP_UNKNOWN
#define AP_UNKNOWN
#endif
#endif
#ifdef AP_WIN32
#ifdef AP_UNKNOWN
#error Multiple environments are declared!
#endif
#endif
/********************************************************************
This symbol is used for debugging. Do not define it and do not remove
comments.
********************************************************************/
//#define UNSAFE_MEM_COPY
/********************************************************************
Namespace of a standard library AlgoPascal.
********************************************************************/
namespace ap
{
/********************************************************************
Service routines:
amalloc - allocates an aligned block of size bytes
afree - frees block allocated by amalloc
vlen - just alias for n2-n1+1
********************************************************************/
void* amalloc(size_t size, size_t alignment);
void afree(void *block);
int vlen(int n1, int n2);
/********************************************************************
Exception class.
********************************************************************/
class ap_error
{
public:
ap_error(){};
ap_error(const char *s){ msg = s; };
std::string msg;
static void make_assertion(bool bClause)
{ if(!bClause) throw ap_error(); };
static void make_assertion(bool bClause, const char *msg)
{ if(!bClause) throw ap_error(msg); };
private:
};
/********************************************************************
Class defining a complex number with double precision.
********************************************************************/
class complex;
class complex
{
public:
complex():x(0.0),y(0.0){};
complex(const double &_x):x(_x),y(0.0){};
complex(const double &_x, const double &_y):x(_x),y(_y){};
complex(const complex &z):x(z.x),y(z.y){};
complex& operator= (const double& v){ x = v; y = 0.0; return *this; };
complex& operator+=(const double& v){ x += v; return *this; };
complex& operator-=(const double& v){ x -= v; return *this; };
complex& operator*=(const double& v){ x *= v; y *= v; return *this; };
complex& operator/=(const double& v){ x /= v; y /= v; return *this; };
complex& operator= (const complex& z){ x = z.x; y = z.y; return *this; };
complex& operator+=(const complex& z){ x += z.x; y += z.y; return *this; };
complex& operator-=(const complex& z){ x -= z.x; y -= z.y; return *this; };
complex& operator*=(const complex& z){ double t = x*z.x-y*z.y; y = x*z.y+y*z.x; x = t; return *this; };
complex& operator/=(const complex& z)
{
ap::complex result;
double e;
double f;
if( fabs(z.y)<fabs(z.x) )
{
e = z.y/z.x;
f = z.x+z.y*e;
result.x = (z.x+z.y*e)/f;
result.y = (z.y-z.x*e)/f;
}
else
{
e = z.x/z.y;
f = z.y+z.x*e;
result.x = (z.y+z.x*e)/f;
result.y = (-z.x+z.y*e)/f;
}
*this = result;
return *this;
};
double x, y;
};
const complex operator/(const complex& lhs, const complex& rhs);
const bool operator==(const complex& lhs, const complex& rhs);
const bool operator!=(const complex& lhs, const complex& rhs);
const complex operator+(const complex& lhs);
const complex operator-(const complex& lhs);
const complex operator+(const complex& lhs, const complex& rhs);
const complex operator+(const complex& lhs, const double& rhs);
const complex operator+(const double& lhs, const complex& rhs);
const complex operator-(const complex& lhs, const complex& rhs);
const complex operator-(const complex& lhs, const double& rhs);
const complex operator-(const double& lhs, const complex& rhs);
const complex operator*(const complex& lhs, const complex& rhs);
const complex operator*(const complex& lhs, const double& rhs);
const complex operator*(const double& lhs, const complex& rhs);
const complex operator/(const complex& lhs, const complex& rhs);
const complex operator/(const double& lhs, const complex& rhs);
const complex operator/(const complex& lhs, const double& rhs);
const double abscomplex(const complex &z);
const complex conj(const complex &z);
const complex csqr(const complex &z);
/********************************************************************
Templates for vector operations
********************************************************************/
#include "apvt.h"
/********************************************************************
Level 1 BLAS functions
********************************************************************/
double vdotproduct(const double *v0, int stride0, const double *v1, int stride1, int n);
complex vdotproduct(const complex *v0, int stride0, const char *conj0, const complex *v1, int stride1, const char *conj1, int n);
void vmove(double *vdst, int stride_dst, const double* vsrc, int stride_src, int n);
void vmove(complex *vdst, int stride_dst, const complex* vsrc, int stride_src, const char *conj_src, int n);
void vmoveneg(double *vdst, int stride_dst, const double* vsrc, int stride_src, int n);
void vmoveneg(complex *vdst, int stride_dst, const complex* vsrc, int stride_src, const char *conj_src, int n);
void vmove(double *vdst, int stride_dst, const double* vsrc, int stride_src, int n, double alpha);
void vmove(complex *vdst, int stride_dst, const complex* vsrc, int stride_src, const char *conj_src, int n, double alpha);
void vmove(complex *vdst, int stride_dst, const complex* vsrc, int stride_src, const char *conj_src, int n, complex alpha);
void vadd(double *vdst, int stride_dst, const double *vsrc, int stride_src, int n);
void vadd(complex *vdst, int stride_dst, const complex *vsrc, int stride_src, const char *conj_src, int n);
void vadd(double *vdst, int stride_dst, const double *vsrc, int stride_src, int n, double alpha);
void vadd(complex *vdst, int stride_dst, const complex *vsrc, int stride_src, const char *conj_src, int n, double alpha);
void vadd(complex *vdst, int stride_dst, const complex *vsrc, int stride_src, const char *conj_src, int n, complex alpha);
void vsub(double *vdst, int stride_dst, const double *vsrc, int stride_src, int n);
void vsub(complex *vdst, int stride_dst, const complex *vsrc, int stride_src, const char *conj_src, int n);
void vsub(double *vdst, int stride_dst, const double *vsrc, int stride_src, int n, double alpha);
void vsub(complex *vdst, int stride_dst, const complex *vsrc, int stride_src, const char *conj_src, int n, double alpha);
void vsub(complex *vdst, int stride_dst, const complex *vsrc, int stride_src, const char *conj_src, int n, complex alpha);
void vmul(double *vdst, int stride_dst, int n, double alpha);
void vmul(complex *vdst, int stride_dst, int n, double alpha);
void vmul(complex *vdst, int stride_dst, int n, complex alpha);
/********************************************************************
Obsolete BLAS functions
********************************************************************/
double vdotproduct(const double *v1, const double *v2, int N);
complex vdotproduct(const complex *v1, const complex *v2, int N);
void vmove(double *vdst, const double* vsrc, int N);
void vmove(complex *vdst, const complex* vsrc, int N);
void vmoveneg(double *vdst, const double *vsrc, int N);
void vmoveneg(complex *vdst, const complex *vsrc, int N);
void vmove(double *vdst, const double *vsrc, int N, double alpha);
void vmove(complex *vdst, const complex *vsrc, int N, double alpha);
void vmove(complex *vdst, const complex *vsrc, int N, complex alpha);
void vadd(double *vdst, const double *vsrc, int N);
void vadd(complex *vdst, const complex *vsrc, int N);
void vadd(double *vdst, const double *vsrc, int N, double alpha);
void vadd(complex *vdst, const complex *vsrc, int N, double alpha);
void vadd(complex *vdst, const complex *vsrc, int N, complex alpha);
void vsub(double *vdst, const double *vsrc, int N);
void vsub(complex *vdst, const complex *vsrc, int N);
void vsub(double *vdst, const double *vsrc, int N, double alpha);
void vsub(complex *vdst, const complex *vsrc, int N, double alpha);
void vsub(complex *vdst, const complex *vsrc, int N, complex alpha);
void vmul(double *vdst, int N, double alpha);
void vmul(complex *vdst, int N, double alpha);
void vmul(complex *vdst, int N, complex alpha);
/********************************************************************
Template of a dynamical one-dimensional array
********************************************************************/
template<class T, bool Aligned = false>
class template_1d_array
{
public:
template_1d_array()
{
m_Vec=0;
m_iVecSize = 0;
m_iLow = 0;
m_iHigh = -1;
};
~template_1d_array()
{
if(m_Vec)
{
if( Aligned )
ap::afree(m_Vec);
else
delete[] m_Vec;
}
};
template_1d_array(const template_1d_array &rhs)
{
m_Vec=0;
m_iVecSize = 0;
m_iLow = 0;
m_iHigh = -1;
if( rhs.m_iVecSize!=0 )
setcontent(rhs.m_iLow, rhs.m_iHigh, rhs.getcontent());
};
const template_1d_array& operator=(const template_1d_array &rhs)
{
if( this==&rhs )
return *this;
if( rhs.m_iVecSize!=0 )
setcontent(rhs.m_iLow, rhs.m_iHigh, rhs.getcontent());
else
{
m_Vec=0;
m_iVecSize = 0;
m_iLow = 0;
m_iHigh = -1;
}
return *this;
};
const T& operator()(int i) const
{
#ifndef NO_AP_ASSERT
ap_error::make_assertion(i>=m_iLow && i<=m_iHigh);
#endif
return m_Vec[ i-m_iLow ];
};
T& operator()(int i)
{
#ifndef NO_AP_ASSERT
ap_error::make_assertion(i>=m_iLow && i<=m_iHigh);
#endif
return m_Vec[ i-m_iLow ];
};
void setbounds( int iLow, int iHigh )
{
if(m_Vec)
{
if( Aligned )
ap::afree(m_Vec);
else
delete[] m_Vec;
}
m_iLow = iLow;
m_iHigh = iHigh;
m_iVecSize = iHigh-iLow+1;
if( Aligned )
m_Vec = (T*)ap::amalloc((size_t)(m_iVecSize*sizeof(T)), 16);
else
m_Vec = new T[(size_t)m_iVecSize];
};
void setlength(int iLen)
{
setbounds(0, iLen-1);
}
void setcontent( int iLow, int iHigh, const T *pContent )
{
setbounds(iLow, iHigh);
for(int i=0; i<m_iVecSize; i++)
m_Vec[i] = pContent[i];
};
T* getcontent()
{
return m_Vec;
};
const T* getcontent() const
{
return m_Vec;
};
int getlowbound(int iBoundNum = 0) const
{
return m_iLow;
};
int gethighbound(int iBoundNum = 0) const
{
return m_iHigh;
};
raw_vector<T> getvector(int iStart, int iEnd)
{
if( iStart>iEnd || wrongIdx(iStart) || wrongIdx(iEnd) )
return raw_vector<T>(0, 0, 1);
else
return raw_vector<T>(m_Vec+iStart-m_iLow, iEnd-iStart+1, 1);
};
const_raw_vector<T> getvector(int iStart, int iEnd) const
{
if( iStart>iEnd || wrongIdx(iStart) || wrongIdx(iEnd) )
return const_raw_vector<T>(0, 0, 1);
else
return const_raw_vector<T>(m_Vec+iStart-m_iLow, iEnd-iStart+1, 1);
};
private:
bool wrongIdx(int i) const { return i<m_iLow || i>m_iHigh; };
T *m_Vec;
long m_iVecSize;
long m_iLow, m_iHigh;
};
/********************************************************************
Template of a dynamical two-dimensional array
********************************************************************/
template<class T, bool Aligned = false>
class template_2d_array
{
public:
template_2d_array()
{
m_Vec=0;
m_iVecSize=0;
m_iLow1 = 0;
m_iHigh1 = -1;
m_iLow2 = 0;
m_iHigh2 = -1;
};
~template_2d_array()
{
if(m_Vec)
{
if( Aligned )
ap::afree(m_Vec);
else
delete[] m_Vec;
}
};
template_2d_array(const template_2d_array &rhs)
{
m_Vec=0;
m_iVecSize=0;
m_iLow1 = 0;
m_iHigh1 = -1;
m_iLow2 = 0;
m_iHigh2 = -1;
if( rhs.m_iVecSize!=0 )
{
setbounds(rhs.m_iLow1, rhs.m_iHigh1, rhs.m_iLow2, rhs.m_iHigh2);
for(int i=m_iLow1; i<=m_iHigh1; i++)
for(int j=m_iLow2; j<=m_iHigh2; j++)
operator()(i,j) = rhs(i,j);
//vmove(&(operator()(i,m_iLow2)), &(rhs(i,m_iLow2)), m_iHigh2-m_iLow2+1);
}
};
const template_2d_array& operator=(const template_2d_array &rhs)
{
if( this==&rhs )
return *this;
if( rhs.m_iVecSize!=0 )
{
setbounds(rhs.m_iLow1, rhs.m_iHigh1, rhs.m_iLow2, rhs.m_iHigh2);
for(int i=m_iLow1; i<=m_iHigh1; i++)
for(int j=m_iLow2; j<=m_iHigh2; j++)
operator()(i,j) = rhs(i,j);
//vmove(&(operator()(i,m_iLow2)), &(rhs(i,m_iLow2)), m_iHigh2-m_iLow2+1);
}
else
{
if(m_Vec)
{
if( Aligned )
ap::afree(m_Vec);
else
delete[] m_Vec;
}
m_Vec=0;
m_iVecSize=0;
m_iLow1 = 0;
m_iHigh1 = -1;
m_iLow2 = 0;
m_iHigh2 = -1;
}
return *this;
};
const T& operator()(int i1, int i2) const
{
#ifndef NO_AP_ASSERT
ap_error::make_assertion(i1>=m_iLow1 && i1<=m_iHigh1);
ap_error::make_assertion(i2>=m_iLow2 && i2<=m_iHigh2);
#endif
return m_Vec[ m_iConstOffset + i2 +i1*m_iLinearMember];
};
T& operator()(int i1, int i2)
{
#ifndef NO_AP_ASSERT
ap_error::make_assertion(i1>=m_iLow1 && i1<=m_iHigh1);
ap_error::make_assertion(i2>=m_iLow2 && i2<=m_iHigh2);
#endif
return m_Vec[ m_iConstOffset + i2 +i1*m_iLinearMember];
};
void setbounds( int iLow1, int iHigh1, int iLow2, int iHigh2 )
{
if(m_Vec)
{
if( Aligned )
ap::afree(m_Vec);
else
delete[] m_Vec;
}
int n1 = iHigh1-iLow1+1;
int n2 = iHigh2-iLow2+1;
m_iVecSize = n1*n2;
if( Aligned )
{
//if( n2%2!=0 )
while( (n2*sizeof(T))%16!=0 )
{
n2++;
m_iVecSize += n1;
}
m_Vec = (T*)ap::amalloc((size_t)(m_iVecSize*sizeof(T)), 16);
}
else
m_Vec = new T[(size_t)m_iVecSize];
m_iLow1 = iLow1;
m_iHigh1 = iHigh1;
m_iLow2 = iLow2;
m_iHigh2 = iHigh2;
m_iConstOffset = -m_iLow2-m_iLow1*n2;
m_iLinearMember = n2;
};
void setlength(int iLen1, int iLen2)
{
setbounds(0, iLen1-1, 0, iLen2-1);
}
void setcontent( int iLow1, int iHigh1, int iLow2, int iHigh2, const T *pContent )
{
setbounds(iLow1, iHigh1, iLow2, iHigh2);
for(int i=m_iLow1; i<=m_iHigh1; i++, pContent += m_iHigh2-m_iLow2+1)
for(int j=m_iLow2; j<=m_iHigh2; j++)
operator()(i,j) = pContent[j-m_iLow2];
//vmove(&(operator()(i,m_iLow2)), pContent, m_iHigh2-m_iLow2+1);
};
int getlowbound(int iBoundNum) const
{
return iBoundNum==1 ? m_iLow1 : m_iLow2;
};
int gethighbound(int iBoundNum) const
{
return iBoundNum==1 ? m_iHigh1 : m_iHigh2;
};
raw_vector<T> getcolumn(int iColumn, int iRowStart, int iRowEnd)
{
if( (iRowStart>iRowEnd) || wrongColumn(iColumn) || wrongRow(iRowStart) ||wrongRow(iRowEnd) )
return raw_vector<T>(0, 0, 1);
else
return raw_vector<T>(&((*this)(iRowStart, iColumn)), iRowEnd-iRowStart+1, m_iLinearMember);
};
raw_vector<T> getrow(int iRow, int iColumnStart, int iColumnEnd)
{
if( (iColumnStart>iColumnEnd) || wrongRow(iRow) || wrongColumn(iColumnStart) || wrongColumn(iColumnEnd))
return raw_vector<T>(0, 0, 1);
else
return raw_vector<T>(&((*this)(iRow, iColumnStart)), iColumnEnd-iColumnStart+1, 1);
};
const_raw_vector<T> getcolumn(int iColumn, int iRowStart, int iRowEnd) const
{
if( (iRowStart>iRowEnd) || wrongColumn(iColumn) || wrongRow(iRowStart) ||wrongRow(iRowEnd) )
return const_raw_vector<T>(0, 0, 1);
else
return const_raw_vector<T>(&((*this)(iRowStart, iColumn)), iRowEnd-iRowStart+1, m_iLinearMember);
};
const_raw_vector<T> getrow(int iRow, int iColumnStart, int iColumnEnd) const
{
if( (iColumnStart>iColumnEnd) || wrongRow(iRow) || wrongColumn(iColumnStart) || wrongColumn(iColumnEnd))
return const_raw_vector<T>(0, 0, 1);
else
return const_raw_vector<T>(&((*this)(iRow, iColumnStart)), iColumnEnd-iColumnStart+1, 1);
};
int getstride() const
{
return m_iLinearMember;
};
private:
bool wrongRow(int i) const { return i<m_iLow1 || i>m_iHigh1; };
bool wrongColumn(int j) const { return j<m_iLow2 || j>m_iHigh2; };
T *m_Vec;
long m_iVecSize;
long m_iLow1, m_iLow2, m_iHigh1, m_iHigh2;
long m_iConstOffset, m_iLinearMember;
};
typedef template_1d_array<int> integer_1d_array;
typedef template_1d_array<double,true> real_1d_array;
typedef template_1d_array<complex> complex_1d_array;
typedef template_1d_array<bool> boolean_1d_array;
typedef template_2d_array<int> integer_2d_array;
typedef template_2d_array<double,true> real_2d_array;
typedef template_2d_array<complex> complex_2d_array;
typedef template_2d_array<bool> boolean_2d_array;
/********************************************************************
dataset information.
can store regression dataset, classification dataset, or non-labeled
task:
* nout==0 means non-labeled task (clustering, for example)
* nout>0 && nclasses==0 means regression task
* nout>0 && nclasses>0 means classification task
********************************************************************/
/*class dataset
{
public:
dataset():nin(0), nout(0), nclasses(0), trnsize(0), valsize(0), tstsize(0), totalsize(0){};
int nin, nout, nclasses;
int trnsize;
int valsize;
int tstsize;
int totalsize;
ap::real_2d_array trn;
ap::real_2d_array val;
ap::real_2d_array tst;
ap::real_2d_array all;
};
bool opendataset(std::string file, dataset *pdataset);
//
// internal functions
//
std::string strtolower(const std::string &s);
bool readstrings(std::string file, std::list<std::string> *pOutput);
bool readstrings(std::string file, std::list<std::string> *pOutput, std::string comment);
void explodestring(std::string s, char sep, std::vector<std::string> *pOutput);
std::string xtrim(std::string s);*/
/********************************************************************
reverse communication state
********************************************************************/
struct rcommstate
{
int stage;
ap::integer_1d_array ia;
ap::boolean_1d_array ba;
ap::real_1d_array ra;
ap::complex_1d_array ca;
};
/********************************************************************
Constants and functions introduced for compatibility with AlgoPascal
********************************************************************/
extern const double machineepsilon;
extern const double maxrealnumber;
extern const double minrealnumber;
int sign(double x);
double randomreal();
int randominteger(int maxv);
int round_f(double x);
int trunc(double x);
int ifloor(double x);
int iceil(double x);
double pi();
double sqr(double x);
int maxint(int m1, int m2);
int minint(int m1, int m2);
double maxreal(double m1, double m2);
double minreal(double m1, double m2);
bool fp_eq(double v1, double v2);
bool fp_neq(double v1, double v2);
bool fp_less(double v1, double v2);
bool fp_less_eq(double v1, double v2);
bool fp_greater(double v1, double v2);
bool fp_greater_eq(double v1, double v2);
}//namespace ap
#endif