Skip to content
This repository has been archived by the owner on Jan 15, 2019. It is now read-only.

Latest commit

 

History

History
executable file
·
48 lines (31 loc) · 2.48 KB

README.md

File metadata and controls

executable file
·
48 lines (31 loc) · 2.48 KB

Deep Convolutional Neural Networks for Semantic Segmentation of Multi-Band Satellite Images

Preparation

  • Download 3-band and 16-band from here and extract to data folders
  • Install requirements by executing:

$ pip install -r requirements.txt

  • In addition you need to install either tensorflow or tensorflow-gpu

Training

$ python train.py

Argument Description Options
--algorithm Algorithm to train unet, fcn_densenet, tiramisu, pspnet
--size Size of patches int
--epochs Epochs to train for int
--batch Samples per batch int
--channels Image channels 3, 8, 16
--loss Loss function crossentropy, jaccard, dice, cejaccard, cedice
--verbose Print more information bool
--noaugment Turn off augmentation bool
--name Give run a custom name str

Testing

$ python train.py --test

Argument Description Options
--algorithm Algorithm to test unet, fcn_densenet, tiramisu, pspnet
--size Size of patches int
--channels Image channels 3, 8, 16
--verbose Print more information bool

Visualization

It's possible to run some visualization of the data by running $ python visualize.py from the utils folder.