forked from lh3/bwa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
is.c
218 lines (208 loc) · 6.44 KB
/
is.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/*
* sais.c for sais-lite
* Copyright (c) 2008 Yuta Mori All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <stdlib.h>
typedef unsigned char ubyte_t;
#define chr(i) (cs == sizeof(int) ? ((const int *)T)[i]:((const unsigned char *)T)[i])
/* find the start or end of each bucket */
static void getCounts(const unsigned char *T, int *C, int n, int k, int cs)
{
int i;
for (i = 0; i < k; ++i) C[i] = 0;
for (i = 0; i < n; ++i) ++C[chr(i)];
}
static void getBuckets(const int *C, int *B, int k, int end)
{
int i, sum = 0;
if (end) {
for (i = 0; i < k; ++i) {
sum += C[i];
B[i] = sum;
}
} else {
for (i = 0; i < k; ++i) {
sum += C[i];
B[i] = sum - C[i];
}
}
}
/* compute SA */
static void induceSA(const unsigned char *T, int *SA, int *C, int *B, int n, int k, int cs)
{
int *b, i, j;
int c0, c1;
/* compute SAl */
if (C == B) getCounts(T, C, n, k, cs);
getBuckets(C, B, k, 0); /* find starts of buckets */
j = n - 1;
b = SA + B[c1 = chr(j)];
*b++ = ((0 < j) && (chr(j - 1) < c1)) ? ~j : j;
for (i = 0; i < n; ++i) {
j = SA[i], SA[i] = ~j;
if (0 < j) {
--j;
if ((c0 = chr(j)) != c1) {
B[c1] = b - SA;
b = SA + B[c1 = c0];
}
*b++ = ((0 < j) && (chr(j - 1) < c1)) ? ~j : j;
}
}
/* compute SAs */
if (C == B) getCounts(T, C, n, k, cs);
getBuckets(C, B, k, 1); /* find ends of buckets */
for (i = n - 1, b = SA + B[c1 = 0]; 0 <= i; --i) {
if (0 < (j = SA[i])) {
--j;
if ((c0 = chr(j)) != c1) {
B[c1] = b - SA;
b = SA + B[c1 = c0];
}
*--b = ((j == 0) || (chr(j - 1) > c1)) ? ~j : j;
} else SA[i] = ~j;
}
}
/*
* find the suffix array SA of T[0..n-1] in {0..k-1}^n use a working
* space (excluding T and SA) of at most 2n+O(1) for a constant alphabet
*/
static int sais_main(const unsigned char *T, int *SA, int fs, int n, int k, int cs)
{
int *C, *B, *RA;
int i, j, c, m, p, q, plen, qlen, name;
int c0, c1;
int diff;
/* stage 1: reduce the problem by at least 1/2 sort all the
* S-substrings */
if (k <= fs) {
C = SA + n;
B = (k <= (fs - k)) ? C + k : C;
} else if ((C = B = (int *) malloc(k * sizeof(int))) == NULL) return -2;
getCounts(T, C, n, k, cs);
getBuckets(C, B, k, 1); /* find ends of buckets */
for (i = 0; i < n; ++i) SA[i] = 0;
for (i = n - 2, c = 0, c1 = chr(n - 1); 0 <= i; --i, c1 = c0) {
if ((c0 = chr(i)) < (c1 + c)) c = 1;
else if (c != 0) SA[--B[c1]] = i + 1, c = 0;
}
induceSA(T, SA, C, B, n, k, cs);
if (fs < k) free(C);
/* compact all the sorted substrings into the first m items of SA
* 2*m must be not larger than n (proveable) */
for (i = 0, m = 0; i < n; ++i) {
p = SA[i];
if ((0 < p) && (chr(p - 1) > (c0 = chr(p)))) {
for (j = p + 1; (j < n) && (c0 == (c1 = chr(j))); ++j);
if ((j < n) && (c0 < c1)) SA[m++] = p;
}
}
for (i = m; i < n; ++i) SA[i] = 0; /* init the name array buffer */
/* store the length of all substrings */
for (i = n - 2, j = n, c = 0, c1 = chr(n - 1); 0 <= i; --i, c1 = c0) {
if ((c0 = chr(i)) < (c1 + c)) c = 1;
else if (c != 0) {
SA[m + ((i + 1) >> 1)] = j - i - 1;
j = i + 1;
c = 0;
}
}
/* find the lexicographic names of all substrings */
for (i = 0, name = 0, q = n, qlen = 0; i < m; ++i) {
p = SA[i], plen = SA[m + (p >> 1)], diff = 1;
if (plen == qlen) {
for (j = 0; (j < plen) && (chr(p + j) == chr(q + j)); j++);
if (j == plen) diff = 0;
}
if (diff != 0) ++name, q = p, qlen = plen;
SA[m + (p >> 1)] = name;
}
/* stage 2: solve the reduced problem recurse if names are not yet
* unique */
if (name < m) {
RA = SA + n + fs - m;
for (i = n - 1, j = m - 1; m <= i; --i) {
if (SA[i] != 0) RA[j--] = SA[i] - 1;
}
if (sais_main((unsigned char *) RA, SA, fs + n - m * 2, m, name, sizeof(int)) != 0) return -2;
for (i = n - 2, j = m - 1, c = 0, c1 = chr(n - 1); 0 <= i; --i, c1 = c0) {
if ((c0 = chr(i)) < (c1 + c)) c = 1;
else if (c != 0) RA[j--] = i + 1, c = 0; /* get p1 */
}
for (i = 0; i < m; ++i) SA[i] = RA[SA[i]]; /* get index */
}
/* stage 3: induce the result for the original problem */
if (k <= fs) {
C = SA + n;
B = (k <= (fs - k)) ? C + k : C;
} else if ((C = B = (int *) malloc(k * sizeof(int))) == NULL) return -2;
/* put all left-most S characters into their buckets */
getCounts(T, C, n, k, cs);
getBuckets(C, B, k, 1); /* find ends of buckets */
for (i = m; i < n; ++i) SA[i] = 0; /* init SA[m..n-1] */
for (i = m - 1; 0 <= i; --i) {
j = SA[i], SA[i] = 0;
SA[--B[chr(j)]] = j;
}
induceSA(T, SA, C, B, n, k, cs);
if (fs < k) free(C);
return 0;
}
/**
* Constructs the suffix array of a given string.
* @param T[0..n-1] The input string.
* @param SA[0..n] The output array of suffixes.
* @param n The length of the given string.
* @return 0 if no error occurred
*/
int is_sa(const ubyte_t *T, int *SA, int n)
{
if ((T == NULL) || (SA == NULL) || (n < 0)) return -1;
SA[0] = n;
if (n <= 1) {
if (n == 1) SA[1] = 0;
return 0;
}
return sais_main(T, SA+1, 0, n, 256, 1);
}
/**
* Constructs the burrows-wheeler transformed string of a given string.
* @param T[0..n-1] The input string.
* @param n The length of the given string.
* @return The primary index if no error occurred, -1 or -2 otherwise.
*/
int is_bwt(ubyte_t *T, int n)
{
int *SA, i, primary = 0;
SA = (int*)calloc(n+1, sizeof(int));
is_sa(T, SA, n);
for (i = 0; i <= n; ++i) {
if (SA[i] == 0) primary = i;
else SA[i] = T[SA[i] - 1];
}
for (i = 0; i < primary; ++i) T[i] = SA[i];
for (; i < n; ++i) T[i] = SA[i + 1];
free(SA);
return primary;
}