forked from akkana/scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalemma.py
executable file
·623 lines (519 loc) · 23.2 KB
/
analemma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
#! /usr/bin/env python3
# Display an analemma for a specified location and time.
# Copyright 2011,2017 by Akkana Peck: share and enjoy under the GPL v2 or later.
# If you see:
# Couldn't find foreign struct converter for 'cairo.Context'
# it probably means you need python3-gi-cairo.
import ephem
from ephem import cities
import sys
import os
import math
import gi
gi.require_version('Gtk', '3.0')
gi.require_version('PangoCairo', '1.0')
from gi.repository import Gtk
from gi.repository import Gdk
from gi.repository import GdkPixbuf
import cairo
from gi.repository import Pango
from gi.repository import PangoCairo
class AnalemmaWindow(Gtk.Window):
def __init__(self, observer, year, lunar=False, background=None):
super().__init__()
self.observer = observer
print("AnalemmaWindow: observer at %.1f %.1f" % (observer.lat,
observer.lon))
self.year = year
self.lunar = lunar
self.special_dates = None
self.drawing_area = None
self.width = 0
self.height = 0
# Even if we're actually showing the moon, call the object self.sun.
if self.lunar:
self.sun = ephem.Moon()
else:
self.sun = ephem.Sun()
self.sinusoidal = False
self.sun_color = (1, 1, 0)
self.backside_color = (1, .7, 0)
self.text_color = (1, 1, 0)
if background:
self.background_color = background
else:
self.background_color = (0, 0, .6, 1)
self.special_dot_size = 5
def draw_sun_position(self, date):
"""Draw a sun at the appropriate position for date.
date can be a string like "2018/8/9 12:00"
which is the format pyephem expects,
or an EphemDate.
"""
if not self.drawing_area:
print("no drawing area")
return
if type(date) is ephem.Date:
self.observer.date = date
else:
self.observer.date = self.local_to_gmt(date, reverse=True)
self.sun.compute(self.observer)
# Y scale is 90 degrees (PI/2), horizon to zenith:
# y = self.height - int(float(self.sun.alt) * self.height / math.pi * 2)
# So make X scale 90 degrees too, centered around due south.
# Want az = PI to come out at x = width/2,
# az = PI/2 to be 0, 3*PI/2 = width.
# x = int(float(self.sun.az) * self.width / math.pi * 2 - self.width / 2) % self.width
self.project_and_draw(self.sun.az, self.sun.alt, 4)
def calc_special_dates(self):
"""Earlist and latest rising and setting times,
and longest/shortest day.
"""
if self.special_dates:
# Already done, nothing more to do.
return
self.special_dates = {
'earliest sunrise': 24,
'latest sunrise' : 0,
'earliest sunset' : 24,
'latest sunset' : 0,
'longest day len' : 0,
'shortest day len': 24
}
# Start just after midnight on New Year's Day.
dt = self.local_to_gmt('%d/01/01 00:00:01' % (self.year))
# Loop until it's next year:
while (dt.tuple()[0] <= self.year):
self.observer.date = dt
risetime = self.observer.next_rising(ephem.Sun())
self.observer.date = risetime
settime = self.observer.next_setting(ephem.Sun())
self.observer.date = settime
# Now we're done setting observer time, so it's safe to
# convert to localtime.
risetime = self.local_mean_time(risetime)
settime = self.local_mean_time(settime)
risehours = self.ephemdate_to_hours(risetime)
sethours = self.ephemdate_to_hours(settime)
if risehours < self.ephemdate_to_hours(self.special_dates['earliest sunrise']):
self.special_dates['earliest sunrise'] = risetime
if risehours > self.ephemdate_to_hours(self.special_dates['latest sunrise']):
self.special_dates['latest sunrise'] = risetime
if sethours < self.ephemdate_to_hours(self.special_dates['earliest sunset']):
self.special_dates['earliest sunset'] = settime
if sethours > self.ephemdate_to_hours(self.special_dates['latest sunset']):
self.special_dates['latest sunset'] = settime
# calculate daylength in hours
daylength = (settime - risetime) * 24.
if daylength < self.special_dates['shortest day len']:
self.special_dates['shortest day'] = risetime
self.special_dates['shortest day len'] = daylength
if daylength > self.special_dates['longest day len']:
self.special_dates['longest day'] = risetime
self.special_dates['longest day len'] = daylength
dt = ephem.date(dt + ephem.hour * 24)
def gmt_for_time_on_date(self, edate, timetuple):
"""Returns the ephem.date for the GMT corresponding to localtime
timetuple on the given ephem.date.
"""
tup = list(edate.tuple())
tup[3], tup[4], tup[5] = timetuple
return self.local_to_gmt(ephem.date(tuple(tup)), reverse=True)
def draw_special_dates(self, timestr, labels=True):
# Make a tuple out from timestr
if ':' in timestr:
timetuple = list(map(int, timestr.split(':')))
while len(timetuple) < 3:
timetuple.append(0)
else:
timetuple = (int(timestr), 0, 0)
for key in self.special_dates:
d = self.special_dates[key]
if not isinstance(d, ephem.date):
continue
gmt = self.gmt_for_time_on_date(d, timetuple)
self.observer.date = self.gmt_for_time_on_date(d, timetuple)
# print(d, "gmt=", gmt)
self.sun.compute(self.observer)
# print("Computed", self.sun.az, self.sun.alt)
x, y = self.project(self.sun.az, self.sun.alt)
# print("x, y =", x, y)
self.draw_dot(x, y, self.special_dot_size)
if not labels:
continue
# Offsets to figure out where to draw the string.
# That's tough, because they're normally on top of each other.
# Latest sunrise is a little left of earliest sunset,
# and shortest day is in between and a little below both.
offsets = { "latest sunrise" : (-1, 0),
"earliest sunset" : ( 1, 0),
"shortest day" : ( 0, 1),
"latest sunset" : (-1, 0),
"earliest sunrise" : ( 1, 0),
"longest day" : ( 0, -.5)
}
factor = 30
xoffset = int(offsets[key][0] * factor)
yoffset = int(offsets[key][1] * factor)
self.draw_line(x, y, x + xoffset, y + yoffset)
s = str(self.special_dates[key])
if key + " len" in self.special_dates:
# for longest/shortest days, split off the time part
s = s.split(' ')[0]
# and then add the day length
s += ", %.1f hrs" % self.special_dates[key + " len"]
self.draw_string(key + "\n" + s,
x + xoffset, y + yoffset, offsets=offsets[key])
# Draw the equinoxes too. Solstices are too crowded what with
# all the other special dates.
def draw_equinox(start, whicheq, offsets):
equinox = ephem.next_equinox(start)
self.observer.date = self.gmt_for_time_on_date(equinox, (12, 0, 0))
self.sun.compute(self.observer)
x, y = self.project(self.sun.az, self.sun.alt)
print("%s equinox: %s" % (whicheq, str(self.observer.date)))
self.draw_dot(x, y, self.special_dot_size)
if labels:
x1 = x + offsets[0] * 20
self.draw_line(x, y, x1, y)
eqstr = "%s equinox\n%s" % (whicheq, str(equinox).split(' ')[0])
self.draw_string(eqstr, x1, y, offsets)
if observer.lat >= 0: # Northern hemisphere
draw_equinox("%d/1/1" % self.year, "Vernal", (-1, 0))
draw_equinox(observer.date, "Autumnal", (1, 0))
else: # Southern hemisphere
draw_equinox("%d/1/1" % self.year, "Autumnal", (-1, 0))
draw_equinox(observer.date+10, "Vernal", (1, 0))
def special_dates_str(self):
if not self.special_dates:
try:
self.calc_special_dates()
# This can fail with ephem.AlwaysUpError in polar regions.
return '''
Longest day: %d hours on %s
Shortest day: %d hours on %s
Earliest sunrise: %s
Latest sunrise: %s
Earliest sunset: %s
Latest sunset: %s
''' % (self.special_dates["longest day len"],
str(self.special_dates["longest day"]),
self.special_dates["shortest day len"],
str(self.special_dates["shortest day"]),
str(self.special_dates["earliest sunrise"]),
str(self.special_dates["latest sunrise"]),
str(self.special_dates["earliest sunset"]),
str(self.special_dates["latest sunset"]))
except (ephem.AlwaysUpError, ephem.NeverUpError):
return 'Polar region: skipping special dates'
def local_mean_time(self, d, reverse=False):
"""Adjust GMT to local time.
We don't know time zone, but we can adjust for actual
local noon since we know the Observer's longitude:
"""
return ephem.date(ephem.date(d) \
+ float(self.observer.lon) * 12 / math.pi * ephem.hour)
def local_to_gmt(self, d, reverse=False):
"""Adjust GMT to local time.
We don't know time zone, but we can adjust for actual
local noon since we know the Observer's longitude:
"""
return ephem.date(ephem.date(d) \
- float(self.observer.lon) * 12 / math.pi * ephem.hour)
def ephemdate_to_hours(self, edate):
if isinstance(edate, int):
return edate
etuple = edate.tuple()
return etuple[3] + etuple[4]/60. + etuple[5]/3600.
def draw_line(self, x1, y1, x2, y2, width=1):
self.ctx.set_line_width(width)
self.ctx.move_to(x1, y1)
self.ctx.line_to(x2, y2)
self.ctx.stroke()
def draw_rectangle(self, x, y, width, height):
self.ctx.rectangle(x, y, width, height)
self.ctx.fill()
def draw_dot(self, x, y, dotsize):
if dotsize == 1:
self.draw_line(x, y, x, y)
elif dotsize <= 4:
# Draw the dot centered, not hanging off to the lower right:
x = int(x - dotsize / 2)
y = int(y - dotsize / 2)
self.draw_rectangle(x, y, dotsize, dotsize)
self.ctx.fill()
else:
self.ctx.arc(x, y, dotsize, 0, 2*math.pi)
self.ctx.fill()
def draw_string(self, label, x, y, offsets=None):
"""Draw a string at the specified point.
offsets is an optional tuple specifying where the string will
be drawn relative to the coordinates passed in;
for instance, if offsets are (-1, -1) the string will be
drawn with the bottom right edge at the given x, y.
"""
fontname = "Sans Italic 14"
# fontname = "Sans Italic 14"
layout = PangoCairo.create_layout(self.ctx)
desc = Pango.font_description_from_string(fontname)
layout.set_font_description( desc)
layout.set_text(label, -1)
if offsets:
width, height = layout.get_pixel_size()
# # pango draws text with the upper left corner at x, y.
# # So that's an offset of (1, 1). Adjust if offsets are different.
# # XXX Cairo may do things differently.
# xbearing, ybearing, width, height, xadvance, yadvance = \
# self.ctx.text_extents(label)
if offsets[0] == 0:
x -= int(width/2)
elif offsets[0] != 1:
x += int(width * offsets[0])
if offsets[1] != 1:
y += int(height * offsets[1] - height/2)
self.ctx.move_to(x, y)
PangoCairo.show_layout (self.ctx, layout)
# self.ctx.show_text(label)
def project_rectangular(self, az, alt):
"""Rectangular -- don't do any projection, just scaling"""
span = math.pi * 1.2
# if az < math.pi/2:
# az = math.pi - az
# elif az > 3*math.pi/2:
# az = 3 * math.pi - az
y = int((math.pi/2 - alt) * (self.height * 2 / math.pi))
x = int(az * self.width / math.pi - self.width/2)
return (x, y)
def project_sinusoidal(self, lon, lat, dotsize=0):
"""Return a sinusoidal projection as (x, y)"""
# XXX Actually this is bogus, it's not being used right for alt/az.
# Sinusoidal projection
y = int((math.pi/2 - lat) * self.height * 2 / math.pi)
if lat > 90:
return (0, 0)
if lon < math.pi/2:
self.ctx.set_source_rgb(*self.backside_color)
lon = math.pi - lon
elif lon > 3*math.pi/2:
self.ctx.set_source_rgb(*self.backside_color)
lon = 3 * math.pi - lon
else:
self.ctx.set_source_rgb(*self.sun_color)
x = int(((lon - math.pi) * math.cos(lat) * self.width / math.pi)
+ self.width/2)
if dotsize > 0:
self.draw_dot(x, y, dotsize)
return (x, y)
def project_and_draw(self, az, alt, dotsize=0):
if az < math.pi/2 or az > 3*math.pi/2:
self.ctx.set_source_rgb(*self.backside_color)
else:
self.ctx.set_source_rgb(*self.sun_color)
x, y = self.project(az, alt)
if dotsize > 0:
self.draw_dot(x, y, dotsize)
def project(self, az, alt, dotsize=0):
if self.sinusoidal:
return self.project_sinusoidal(az, alt)
else:
return self.project_rectangular(az, alt)
def draw(self, widget, ctx, background=None, labels=True):
"""Draw everything: the analemma and all the labels.
If background isn't passed, we'll default to
self.background_color (opaque blue), but save_image()
will pass in a transparent background.
"""
self.ctx = ctx
self.width, self.height = self.get_size()
# Draw a blue background. But if we're using a sinusoidal
# projection, then only color the projected part blue.
if not background:
background = self.background_color
ctx.set_source_rgba(*background)
if self.sinusoidal:
self.draw_rectangle(0, 0, self.width, self.height)
for f in range(0, int(math.pi * 100)):
theta = f/200.
(x, y) = self.project_sinusoidal(math.pi/2, theta)
self.draw_rectangle(x, y, self.width - 2*x, 4)
else:
self.draw_rectangle(0, 0, self.width, self.height)
# Draw some projected grid lines
for f in range(0, int(math.pi * 100), 5):
theta = f/200. # i is going from 0 to pi/2
# Draw the equator: (doesn't actually show up)
# self.project_and_draw(theta + math.pi/2, 0., 1)
# self.project_and_draw(theta + math.pi, 0., 1)
# Central meridian (180 dgrees)
self.project_and_draw(math.pi, theta, 1)
# and a few other lines
# self.project_and_draw(math.pi * .75, theta, 1)
# self.project_and_draw(math.pi*1.25, theta, 1)
# Then prepare to draw the sun in yellow:
ctx.set_source_rgb(*self.sun_color)
if self.lunar:
# When is the moon on the meridian today?
# Remember, it's self.sun even if it really is the moon.
self.observer.date = ephem.now()
# self.observer.date = ephem.Date('6/13/2005')
transit = self.observer.next_transit(self.sun)
# For testing, try replacing 30 with, say, 5000 to see the
# motion of the moon over many years.
for i in range(0, 30):
self.draw_sun_position(transit)
# Also draw lunar analemmas 4 hours earlier and later:
self.draw_sun_position(ephem.Date(transit - 2.5 * ephem.hour))
self.draw_sun_position(ephem.Date(transit + 2.5 * ephem.hour))
# Increment the date.
# How many minutes earlier does the moon rise each day?
# Of course it varies because of the eccentricity
# (and other complications) of the moon's orbit,
# that being the whole point of looking for analemmas,
# so what we want is the average time.
#
# But the actual number should be
# (360 / 27.321661 - 360 / 365.25) * 24*60/360 = 48.76 hmm
# (previous reasoning, wrong) 48.76 =
# 24 * 60 / 29.530588853, days in a synodic month.
# But in this simulation, 48.76 doesn't return the moon
# to the same place after the end of a month.
# 50.47 gives the tightest grouping.
# += doesn't work on ephem.Dates, it converts to float.
transit = ephem.Date(transit + 1.0 + 50.47 * ephem.minute)
# transit = ephem.Date(transit + 1.0 + 48.76 * ephem.minute)
else:
# Calculate earliest sunrise and suchlike.
self.calc_special_dates()
# Draw three analemmas, showing the sun positions at 7:40 am,
# noon, and 4:40 pm ... in each case adjusted for mean solar time,
# i.e. the observer's position within their timezone.
for time in [ '7:30', '12:00', '16:30' ]:
for m in range(1, 13):
self.draw_sun_position('%d/%d/1 %s' % (self.year, m, time))
self.draw_sun_position('%d/%d/10 %s' % (self.year, m, time))
self.draw_sun_position('%d/%d/20 %s' % (self.year, m, time))
# Mark special dates for mean solar noon.
if not self.lunar:
self.draw_special_dates("12:00", labels)
if labels:
# Make a label
if observer.name == "custom":
obslabel = "%.1f N, %.1f E" % (observer.lat, observer.lon)
else:
obslabel = self.observer.name
# Split off lengthy labels that interfere with time labels
if ", " in obslabel:
obslabel = obslabel.split(', ')[0]
self.draw_string(obslabel, 10, 10)
def save_image(self, outfile, labels=False):
"""Save the analemma as a PNG image, with the background
transparent so it can be overlayed on top of a planetarium
show, scenics, etc.
Will save to a file named Analemma-$sitename.png
with spaces replaced with dashes.
"""
dst_surface = cairo.ImageSurface(cairo.FORMAT_ARGB32,
self.width, self.height)
dst_ctx = cairo.Context(dst_surface)
# draw() will overwrite self.ctx, so save it first:
save_ctx = self.ctx
# Draw everything again to the new context,
# with a transparent instead of an opaque background:
self.draw(None, dst_ctx, (0, 0, 1, 0), labels)
# Restore the GUI context:
self.ctx = save_ctx
dst_surface.write_to_png(outfile)
print("Saved to", outfile)
def key_press(self, widget, event):
"""Handle a key press event anywhere in the window"""
# Note: to handle just printables with no modifier keys,
# use e.g. if event.string == "q"
if event.keyval == Gdk.KEY_q:
Gtk.main_quit()
return
if event.keyval == Gdk.KEY_s and \
event.state & Gdk.ModifierType.CONTROL_MASK:
obsname = self.observer.name.replace(' ', '-')
self.save_image("Analemma-%s.png" % obsname, labels=False)
self.save_image("Analemma-%s-labels.png" % obsname, labels=True)
return True
return False
def show_window(self):
self.drawing_area = Gtk.DrawingArea()
self.set_default_size(1024, 450) # was 512
self.add(self.drawing_area)
# self.connect("delete_event", Gtk.main_quit)
self.connect("destroy", Gtk.main_quit)
self.connect("key-press-event", self.key_press)
self.drawing_area.connect('draw', self.draw)
self.show_all()
Gtk.main()
def observer_for_city(city):
try:
return ephem.city(city)
except KeyError:
pass
try:
return cities.lookup(city)
except ValueError:
pass
# Add some cities pyephem doesn't know:
if city == 'San Jose': # San Jose, CA at Houge Park
observer = ephem.Observer()
observer.name = "San Jose"
observer.lon = '-121:56.8'
observer.lat = '37:15.55'
observer.elevation = 100
return observer
elif city == 'Los Alamos': # Los Alamos, NM Nature Center
observer = ephem.Observer()
observer.name = "Los Alamos"
observer.lon = '-106:18.36'
observer.lat = '35:53.09'
observer.elevation = 2100
return observer
elif city == 'White Rock': # White Rock, NM Visitor Center
observer = ephem.Observer()
observer.name = "White Rock"
observer.lon = '-106:12.75'
observer.lat = '35:49.61'
observer.elevation = 1960
return observer
return None
if __name__ == "__main__":
def Usage():
progname = os.path.basename(sys.argv[0])
print("""Usage: %s [cityname [sun|moon]]
%s lat lon [sun|moon]""" % (progname, progname))
sys.exit(0)
# We can optionally show an analemma of the moon rather than the sun.
lunar = False
# Is the last argument either "sun" or "moon"? If so, split it off.
if sys.argv[-1] == 'sun':
sys.argv = sys.argv[:-1]
elif sys.argv[-1] == 'moon' or sys.argv[-1] == 'lunar':
lunar = True
sys.argv = sys.argv[:-1]
if len(sys.argv) == 2:
if sys.argv[1] == "-h" or sys.argv[1] == "--help":
Usage()
observer = observer_for_city(sys.argv[1])
elif len(sys.argv) == 3:
observer = ephem.Observer()
observer.lat = sys.argv[1]
observer.lon = sys.argv[2]
observer.elevation = 100
observer.name = "Observer at %s, %s" % (observer.lon, observer.lat)
else:
observer = observer_for_city('Los Alamos')
if not observer:
print("Can't find an observer for", ' '.join(sys.argv[1:]))
sys.exit(1)
# from ephem import cities
# observer = cities.lookup('Los Alamos, NM')
# but this is subject to Google rate lookup limits,
# don't do it repeatedly
awin = AnalemmaWindow(observer, ephem.now().triple()[0], lunar,
background=(0, 0, 0))
print(awin.special_dates_str())
awin.show_window()