forked from UILXELA/thesis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtx_label.py
222 lines (183 loc) · 5.87 KB
/
tx_label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os
import glob
import numpy as np
import math
"""
Conversion between kitti coordinates and camera coordinates is:
Cam: x,y,z ==> Kitti: -y,-z,x
"""
BASE_DIR="./"
LABEL_DIR="training/label_2"
LOC_DIR="training/locational"
REF="_out1"
def read_client_dir():
folders = next(os.walk(BASE_DIR))[1]
return folders
def distance_check(loc1, loc2):
distance=np.sqrt((loc1[0]-loc2[0])**2+(loc1[1]-loc2[1])**2+(loc1[2]-loc2[2])**2)
if distance>1:
return True
def get_path(label_folder,loc_folder,ref_folder,fname):
label_path=os.path.join(label_folder,fname)
loc_path=os.path.join(loc_folder,fname)
ref_path=os.path.join(ref_folder,fname)
return label_path, loc_path, ref_path
def tx_label(count,save_folder):
car_count=0
#clients=read_client_dir()
clients=['_out1', '_out2', '_out3', '_out4']
print(clients)
for ind in range(count):
fname = ("%06d.txt"%ind)
txmed_labels=[]
txmed_locs=[]
ref_locs=[]
for cur_client in clients:
label_folder=os.path.join(cur_client,LABEL_DIR)
loc_folder=os.path.join(cur_client,LOC_DIR)
ref_folder=os.path.join(REF,LOC_DIR)
label_path, loc_path, ref_path = get_path(label_folder,loc_folder,ref_folder,fname)
#for label_path, loc_path, ref_path in zip(label_paths, loc_paths, ref_paths):
loc=open(loc_path,'r').read()
ref=open(ref_path,'r').read()
ref = np.array([float(i) for i in ref.split()])
loc = np.array([float(i) for i in loc.split()])
label_f=open(label_path,'r')
labels = [line.rstrip('\n') for line in label_f]
#if len(labels)==0:
# np.savetxt(os.path.join(save_folder,os.path.basename(label_path)),txmed_labels,delimiter=' ')
# continue
for label in labels:
label = np.array([float(i) for i in label.split() if i!= 'Car'])
if cur_client==REF:
ref_locs.append(label[[10,11,12]])
continue
#print(label.shape)
yaw=np.radians(-ref[4])
yaw2=np.radians(-loc[4])
rot = np.matrix(np.identity(2))
rot[0,0]=np.cos(yaw)
rot[0,1]=-np.sin(yaw)
rot[1,0]=np.sin(yaw)
rot[1,1]=np.cos(yaw)
rel_loc=loc-ref
#print(rel_loc)
rel_loc[0],rel_loc[1] = rot*np.array([[rel_loc[0]],[rel_loc[1]]])
#print(rel_loc)
txm_mat = get_matrix(rel_loc)
label_location=label[10:13]
label[3:7]=txm_bbox(label[10:13],label[7:10])
label_location[[1,2,0]]=label_location[[0,1,2]]
#print(label_location)
label_rot_y=label[13]
label_location=np.concatenate((label_location,[1]))[np.newaxis]
#print(label_location.shape)
txmed_location=txm_mat*label_location.T
label[10:13]=txmed_location[0:3].flatten()
label[[10,11,12]]=label[[11,12,10]]
label[13]=label_rot_y+yaw2-yaw
label[3:7]=txm_bbox(label[10:13],label[7:10])
label_str=[]
for ind,elem in enumerate(label):
if ind<7:
label_str.append(str(int(elem)))
else:
label_str.append(str(elem))
save=True
for loc2 in ref_locs:
if distance_check(label[[10,11,12]], loc2):
continue
else:
save=False
break
for loc2 in txmed_locs:
if distance_check(label[[10,11,12]], loc2) and save:
continue
else:
save=False
break
if save:
car_count+=1
txmed_locs.append(label[[10,11,12]])
txmed_labels.append('Car '+' '.join([elem for elem in label_str]))
filename=os.path.join(save_folder,os.path.basename(label_path))
with open(filename, 'w') as f:
labels_str="\n".join([str(label) for label in txmed_labels])
f.write(labels_str)
f.close()
#np.savetxt(os.path.join(save_folder,os.path.basename(label_path)),txmed_labels,delimiter=' ',fmt='%c')
print("\n\n\n{}\n\n\n".format(car_count))
return
def get_matrix(rel_loc,sc_x=1.0, sc_y=1.0,sc_z=1.0):
"""
Creates matrix from carla transform.
"""
x,y,z,pitch,yaw,roll = rel_loc
#yaw=yaw+180
c_y = np.cos(np.radians(yaw))
s_y = np.sin(np.radians(yaw))
c_r = np.cos(np.radians(roll))
s_r = np.sin(np.radians(roll))
c_p = np.cos(np.radians(pitch))
s_p = np.sin(np.radians(pitch))
matrix = np.matrix(np.identity(4))
matrix[0, 3] = x
matrix[1, 3] = y
matrix[2, 3] = z
matrix[0, 0] = sc_x*c_p * c_y
matrix[0, 1] = sc_y*(c_y * s_p * s_r - s_y * c_r)
matrix[0, 2] = -sc_z*(c_y * s_p * c_r + s_y * s_r)
matrix[1, 0] = sc_x*s_y * c_p
matrix[1, 1] = sc_y*(s_y * s_p * s_r + c_y * c_r)
matrix[1, 2] = sc_z*(-s_y * s_p * c_r + c_y * s_r)
matrix[2, 0] = sc_x*s_p
matrix[2, 1] = -sc_y*(c_p * s_r)
matrix[2, 2] = sc_z*(c_p * c_r)
return matrix
def get_datapoint_count(folders):
label_count = -1
loc_count = -1
count = -1
for folder in folders:
label_dir = os.path.join(BASE_DIR,folder,LABEL_DIR)
loc_dir = os.path.join(BASE_DIR,folder,LOC_DIR)
label_count= len([name for name in os.listdir(label_dir) if name.endswith('.txt')])
loc_count= len([name for name in os.listdir(loc_dir) if name.endswith('.txt')])
if label_count == loc_count:
if count == label_count or count == -1:
count = label_count
else:
print("Folder %s doesn't match in count" %(folder))
return None
else:
print("Folder %s has unmatched loc and label counts" %folder)
return None
return count
def txm_bbox(loc,dim):
WINDOW_WIDTH = 1248
WINDOW_HEIGHT = 384
MINI_WINDOW_WIDTH = 320
MINI_WINDOW_HEIGHT = 180
WINDOW_WIDTH_HALF = WINDOW_WIDTH / 2
WINDOW_HEIGHT_HALF = WINDOW_HEIGHT / 2
k = np.identity(3)
k[0, 2] = WINDOW_WIDTH_HALF
k[1, 2] = WINDOW_HEIGHT_HALF
f = WINDOW_WIDTH / (2.0 * math.tan(90.0 * math.pi / 360.0))
k[0, 0] = k[1, 1] = f
bbox=np.empty(4)
a=np.dot(k,[loc[0]-dim[2]/2,loc[1]-dim[0],loc[2]])
b=np.dot(k,[loc[0]+dim[2]/2,loc[1],loc[2]])
a=a/a[2]
b=b/b[2]
bbox[0:2]=a[0:2]
bbox[2:4]=b[0:2]
#print(bbox)
return bbox
def main():
count=get_datapoint_count(read_client_dir())
save_folder=os.path.join(REF,LABEL_DIR+"_other")
if not os.path.exists(save_folder):
os.makedirs(save_folder)
tx_label(count,save_folder)
main()