forked from wengong-jin/RefineGNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrabd_test.py
executable file
·79 lines (65 loc) · 2.51 KB
/
rabd_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import torch
import torch.nn as nn
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
from torch.utils.data import DataLoader
import json
import csv
import math, random, sys
import numpy as np
import argparse
import os
from structgen import *
from tqdm import tqdm
def build_model(args):
if args.architecture == 'RefineGNN':
return HierarchicalDecoder(args).cuda()
elif args.architecture == 'AR-GNN':
return Decoder(args, return_coords=False).cuda()
elif args.architecture == 'LSTM':
return Seq2Seq(args).cuda()
else:
raise ValueError('Unknown architecture')
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', default='data/rabd/test.jsonl')
parser.add_argument('--architecture', default='RefineGNN')
parser.add_argument('--load_model', required=True)
parser.add_argument('--seed', type=int, default=7)
args = parser.parse_args()
args.cdr_type = '3'
args.context = True
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
if args.architecture == "RefineGNN":
data = AntibodyDataset(args.data_path).data
else:
data = CDRDataset(args.data_path, hcdr=args.cdr_type, lcdr="").cdrs
model_ckpt, opt_ckpt, model_args = torch.load(args.load_model)
model_args.architecture = args.architecture
model = build_model(model_args)
model.load_state_dict(model_ckpt)
model.eval()
succ, tot = 0, 0
with torch.no_grad():
for ab in tqdm(data):
new_cdrs, new_ppl = [], []
batch_size = 5000
for _ in range(10000 // batch_size):
if args.architecture == 'RefineGNN':
orig_cdr = ''.join([x for x,y in zip(ab['seq'], ab['cdr']) if y == args.cdr_type])
hX, hS, hL, hmask = completize([ab] * batch_size)
batch_cdrs, batch_ppl, batch_X = model.generate(hS, hL, hmask, return_ppl=True)
else:
orig_cdr = ab['seq']
(hX, hS, hL, hmask), context = featurize([ab] * batch_size, context=True)
batch_cdrs, batch_ppl = model.generate(hS.size(0), hS.size(1), context=context, return_ppl=True)
new_cdrs.extend(batch_cdrs)
new_ppl.extend(batch_ppl.tolist())
new_res = sorted(zip(new_cdrs, new_ppl), key=lambda x:x[1])
for cdr,ppl in new_res[:100]:
match = [int(a == b) for a,b in zip(orig_cdr, cdr)]
succ += sum(match)
tot += len(match)
print(ab['pdb'], orig_cdr, cdr, ppl, match)
print(f'Amino acid recovery rate = {succ / tot:.4f}')