forked from bojone/vae
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcvae_keras.py
130 lines (100 loc) · 3.96 KB
/
cvae_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#! -*- coding: utf-8 -*-
'''用Keras实现的CVAE
目前只保证支持Tensorflow后端
#来自
https://github.com/keras-team/keras/blob/master/examples/variational_autoencoder.py
'''
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
from keras.layers import Input, Dense, Lambda
from keras.models import Model
from keras import backend as K
from keras import metrics
from keras.datasets import mnist
from keras.utils import to_categorical
batch_size = 100
original_dim = 784
latent_dim = 2 # 隐变量取2维只是为了方便后面画图
intermediate_dim = 256
epochs = 100
epsilon_std = 1.0
num_classes = 10
# 加载MNIST数据集
(x_train, y_train_), (x_test, y_test_) = mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
y_train = to_categorical(y_train_, num_classes)
y_test = to_categorical(y_test_, num_classes)
x = Input(shape=(original_dim,))
h = Dense(intermediate_dim, activation='relu')(x)
# 算p(Z|X)的均值和方差
z_mean = Dense(latent_dim)(h)
z_log_var = Dense(latent_dim)(h)
y = Input(shape=(num_classes,)) # 输入类别
yh = Dense(latent_dim)(y) # 这里就是直接构建每个类别的均值
# 重参数技巧
def sampling(args):
z_mean, z_log_var = args
epsilon = K.random_normal(shape=(K.shape(z_mean)[0], latent_dim), mean=0.,
stddev=epsilon_std)
return z_mean + K.exp(z_log_var / 2) * epsilon
# 重参数层,相当于给输入加入噪声
z = Lambda(sampling, output_shape=(latent_dim,))([z_mean, z_log_var])
# 解码层,也就是生成器部分
decoder_h = Dense(intermediate_dim, activation='relu')
decoder_mean = Dense(original_dim, activation='sigmoid')
h_decoded = decoder_h(z)
x_decoded_mean = decoder_mean(h_decoded)
# 建立模型
vae = Model([x, y], [x_decoded_mean, yh])
# xent_loss是重构loss,kl_loss是KL loss
xent_loss = original_dim * metrics.binary_crossentropy(x, x_decoded_mean)
# 只需要修改K.square(z_mean)为K.square(z_mean - yh),也就是让隐变量向类内均值看齐
kl_loss = - 0.5 * K.sum(1 + z_log_var - K.square(z_mean - yh) - K.exp(z_log_var), axis=-1)
vae_loss = K.mean(xent_loss + kl_loss)
# add_loss是新增的方法,用于更灵活地添加各种loss
vae.add_loss(vae_loss)
vae.compile(optimizer='rmsprop')
vae.summary()
vae.fit([x_train, y_train],
shuffle=True,
epochs=epochs,
batch_size=batch_size,
validation_data=([x_test, y_test], None))
# 构建encoder,然后观察各个数字在隐空间的分布
encoder = Model(x, z_mean)
x_test_encoded = encoder.predict(x_test, batch_size=batch_size)
plt.figure(figsize=(6, 6))
plt.scatter(x_test_encoded[:, 0], x_test_encoded[:, 1], c=y_test_)
plt.colorbar()
plt.show()
# 构建生成器
decoder_input = Input(shape=(latent_dim,))
_h_decoded = decoder_h(decoder_input)
_x_decoded_mean = decoder_mean(_h_decoded)
generator = Model(decoder_input, _x_decoded_mean)
# 输出每个类的均值向量
mu = Model(y, yh)
mu = mu.predict(np.eye(num_classes))
# 观察能否通过控制隐变量的均值来输出特定类别的数字
n = 15 # figure with 15x15 digits
digit_size = 28
figure = np.zeros((digit_size * n, digit_size * n))
output_digit = 9 # 指定输出数字
# 用正态分布的分位数来构建隐变量对
grid_x = norm.ppf(np.linspace(0.05, 0.95, n)) + mu[output_digit][1]
grid_y = norm.ppf(np.linspace(0.05, 0.95, n)) + mu[output_digit][0]
for i, yi in enumerate(grid_x):
for j, xi in enumerate(grid_y):
z_sample = np.array([[xi, yi]])
x_decoded = generator.predict(z_sample)
digit = x_decoded[0].reshape(digit_size, digit_size)
figure[i * digit_size: (i + 1) * digit_size,
j * digit_size: (j + 1) * digit_size] = digit
plt.figure(figsize=(10, 10))
plt.imshow(figure, cmap='Greys_r')
plt.show()