forked from congvvc/LaSagnA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vqa_dataset.py
137 lines (115 loc) · 4.51 KB
/
vqa_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import json
import os
import random
import cv2
import torch
import torch.nn.functional as F
from transformers import CLIPImageProcessor
from model.llava import conversation as conversation_lib
from model.segment_anything.utils.transforms import ResizeLongestSide
from .utils import DEFAULT_IMAGE_TOKEN
def preprocess_multimodal(source, mm_use_im_start_end):
for sentence in source:
if DEFAULT_IMAGE_TOKEN in sentence["value"]:
sentence["value"] = (
sentence["value"].replace(DEFAULT_IMAGE_TOKEN, "").strip()
)
sentence["value"] = DEFAULT_IMAGE_TOKEN + "\n" + sentence["value"]
sentence["value"] = sentence["value"].strip()
if "mmtag" in conversation_lib.default_conversation.version:
sentence["value"] = sentence["value"].replace(
DEFAULT_IMAGE_TOKEN, "<Image>" + DEFAULT_IMAGE_TOKEN + "</Image>"
)
return source
class VQADataset(torch.utils.data.Dataset):
pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1)
pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1)
img_size = 1024
ignore_label = 255
def __init__(
self,
base_image_dir,
tokenizer,
vision_tower,
samples_per_epoch=500 * 8 * 2 * 10,
precision: str = "fp32",
image_size: int = 224,
num_classes_per_sample: int = 3,
exclude_val=False,
vqa_data="llava_instruct_150k",
):
self.exclude_val = exclude_val
self.samples_per_epoch = samples_per_epoch
self.num_classes_per_sample = num_classes_per_sample
self.base_image_dir = base_image_dir
self.image_size = image_size
self.tokenizer = tokenizer
self.precision = precision
self.transform = ResizeLongestSide(image_size)
self.clip_image_processor = CLIPImageProcessor.from_pretrained(vision_tower)
DATA_DIR = os.path.join(base_image_dir, "llava_dataset")
self.vqa_image_root = os.path.join(base_image_dir, "coco/train2017")
with open(os.path.join(DATA_DIR, "{}.json".format(vqa_data))) as f:
vqa_data = json.load(f)
self.vqa_data = vqa_data
print("vqa_data: ", len(self.vqa_data))
def __len__(self):
return self.samples_per_epoch
def preprocess(self, x: torch.Tensor) -> torch.Tensor:
"""Normalize pixel values and pad to a square input."""
# Normalize colors
x = (x - self.pixel_mean) / self.pixel_std
# Pad
h, w = x.shape[-2:]
padh = self.img_size - h
padw = self.img_size - w
x = F.pad(x, (0, padw, 0, padh))
return x
def __getitem__(self, idx):
idx = random.randint(0, len(self.vqa_data) - 1)
item = self.vqa_data[idx]
image_path = os.path.join(self.vqa_image_root, item["image"])
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
ori_size = image.shape[:2]
image_clip = self.clip_image_processor.preprocess(image, return_tensors="pt")[
"pixel_values"
][
0
] # preprocess image for clip
image = self.transform.apply_image(image) # preprocess image for sam
resize = image.shape[:2]
conv = conversation_lib.default_conversation.copy()
source = item["conversations"]
source = preprocess_multimodal(
source,
mm_use_im_start_end=conv.sep_style == conversation_lib.SeparatorStyle.TWO,
)
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
conversations = []
if roles[source[0]["from"]] != conv.roles[0]:
# Skip the first one if it is not from human
source = source[1:]
conv.messages = []
for j, sentence in enumerate(source):
role = roles[sentence["from"]]
assert role == conv.roles[j % 2], f"{i}"
conv.append_message(role, sentence["value"])
conversations.append(conv.get_prompt())
questions = conversations
sampled_classes = conversations
image = self.preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
masks = torch.rand(0, *ori_size)
label = torch.ones(ori_size) * self.ignore_label
return (
image_path,
image,
image_clip,
conversations,
masks,
label,
resize,
questions,
sampled_classes,
'vqa',
)