forked from PreferredAI/cornac
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsbpr_epinions.py
34 lines (30 loc) · 1.48 KB
/
sbpr_epinions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Example for Social Bayesian Personalized Ranking with Epinions dataset"""
import cornac
from cornac.data import Reader, GraphModality
from cornac.datasets import epinions
from cornac.eval_methods import RatioSplit
ratio_split = RatioSplit(data=epinions.load_data(Reader(bin_threshold=4.0)),
test_size=0.1, rating_threshold=0.5,
exclude_unknowns=True, verbose=True,
user_graph=GraphModality(data=epinions.load_trust()))
sbpr = cornac.models.SBPR(k=10, max_iter=50, learning_rate=0.001,
lambda_u=0.015, lambda_v=0.025, lambda_b=0.01,
verbose=True)
rec_10 = cornac.metrics.Recall(k=10)
cornac.Experiment(eval_method=ratio_split,
models=[sbpr],
metrics=[rec_10]).run()