forked from PixArt-alpha/PixArt-alpha
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
331 lines (293 loc) · 15.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import argparse
import datetime
import os
import sys
import time
import types
import warnings
from copy import deepcopy
from pathlib import Path
import torch
import torch.nn as nn
from accelerate import Accelerator, InitProcessGroupKwargs
from accelerate.utils import DistributedType
from diffusers.models import AutoencoderKL
from mmcv.runner import LogBuffer
from torch.utils.data import RandomSampler
from diffusion import IDDPM
from diffusion.data.builder import build_dataset, build_dataloader, set_data_root
from diffusion.model.builder import build_model
from diffusion.utils.checkpoint import save_checkpoint, load_checkpoint
from diffusion.utils.data_sampler import AspectRatioBatchSampler, BalancedAspectRatioBatchSampler
from diffusion.utils.dist_utils import get_world_size, clip_grad_norm_
from diffusion.utils.logger import get_root_logger
from diffusion.utils.lr_scheduler import build_lr_scheduler
from diffusion.utils.misc import set_random_seed, read_config, init_random_seed, DebugUnderflowOverflow
from diffusion.utils.optimizer import build_optimizer, auto_scale_lr
warnings.filterwarnings("ignore") # ignore warning
current_file_path = Path(__file__).resolve()
sys.path.insert(0, str(current_file_path.parent.parent))
def set_fsdp_env():
os.environ["ACCELERATE_USE_FSDP"] = 'true'
os.environ["FSDP_AUTO_WRAP_POLICY"] = 'TRANSFORMER_BASED_WRAP'
os.environ["FSDP_BACKWARD_PREFETCH"] = 'BACKWARD_PRE'
os.environ["FSDP_TRANSFORMER_CLS_TO_WRAP"] = 'PixArtBlock'
def ema_update(model_dest: nn.Module, model_src: nn.Module, rate):
param_dict_src = dict(model_src.named_parameters())
for p_name, p_dest in model_dest.named_parameters():
p_src = param_dict_src[p_name]
assert p_src is not p_dest
p_dest.data.mul_(rate).add_((1 - rate) * p_src.data)
def train():
if config.get('debug_nan', False):
DebugUnderflowOverflow(model)
logger.info('NaN debugger registered. Start to detect overflow during training.')
time_start, last_tic = time.time(), time.time()
log_buffer = LogBuffer()
start_step = start_epoch * len(train_dataloader)
global_step = 0
total_steps = len(train_dataloader) * config.num_epochs
load_vae_feat = getattr(train_dataloader.dataset, 'load_vae_feat', False)
# Now you train the model
for epoch in range(start_epoch + 1, config.num_epochs + 1):
data_time_start= time.time()
data_time_all = 0
for step, batch in enumerate(train_dataloader):
data_time_all += time.time() - data_time_start
if load_vae_feat:
z = batch[0]
else:
with torch.no_grad():
with torch.cuda.amp.autocast(enabled=config.mixed_precision == 'fp16'):
posterior = vae.encode(batch[0]).latent_dist
if config.sample_posterior:
z = posterior.sample()
else:
z = posterior.mode()
clean_images = z * config.scale_factor
y = batch[1]
y_mask = batch[2]
data_info = batch[3]
# Sample a random timestep for each image
bs = clean_images.shape[0]
timesteps = torch.randint(0, config.train_sampling_steps, (bs,), device=clean_images.device).long()
grad_norm = None
with accelerator.accumulate(model):
# Predict the noise residual
optimizer.zero_grad()
loss_term = train_diffusion.training_losses(model, clean_images, timesteps, model_kwargs=dict(y=y, mask=y_mask, data_info=data_info))
loss = loss_term['loss'].mean()
accelerator.backward(loss)
if accelerator.sync_gradients:
grad_norm = accelerator.clip_grad_norm_(model.parameters(), config.gradient_clip)
optimizer.step()
lr_scheduler.step()
if accelerator.sync_gradients:
ema_update(model_ema, model, config.ema_rate)
lr = lr_scheduler.get_last_lr()[0]
logs = {args.loss_report_name: accelerator.gather(loss).mean().item()}
if grad_norm is not None:
logs.update(grad_norm=accelerator.gather(grad_norm).mean().item())
log_buffer.update(logs)
if (step + 1) % config.log_interval == 0 or (step + 1) == 1:
t = (time.time() - last_tic) / config.log_interval
t_d = data_time_all / config.log_interval
avg_time = (time.time() - time_start) / (global_step + 1)
eta = str(datetime.timedelta(seconds=int(avg_time * (total_steps - start_step - global_step - 1))))
eta_epoch = str(datetime.timedelta(seconds=int(avg_time * (len(train_dataloader) - step - 1))))
# avg_loss = sum(loss_buffer) / len(loss_buffer)
log_buffer.average()
info = f"Step/Epoch [{(epoch-1)*len(train_dataloader)+step+1}/{epoch}][{step + 1}/{len(train_dataloader)}]:total_eta: {eta}, " \
f"epoch_eta:{eta_epoch}, time_all:{t:.3f}, time_data:{t_d:.3f}, lr:{lr:.3e}, s:({model.module.h}, {model.module.w}), "
info += ', '.join([f"{k}:{v:.4f}" for k, v in log_buffer.output.items()])
logger.info(info)
last_tic = time.time()
log_buffer.clear()
data_time_all = 0
logs.update(lr=lr)
accelerator.log(logs, step=global_step + start_step)
global_step += 1
data_time_start= time.time()
if ((epoch - 1) * len(train_dataloader) + step + 1) % config.save_model_steps == 0:
accelerator.wait_for_everyone()
if accelerator.is_main_process:
os.umask(0o000)
save_checkpoint(os.path.join(config.work_dir, 'checkpoints'),
epoch=epoch,
step=(epoch - 1) * len(train_dataloader) + step + 1,
model=accelerator.unwrap_model(model),
model_ema=accelerator.unwrap_model(model_ema),
optimizer=optimizer,
lr_scheduler=lr_scheduler
)
if epoch % config.save_model_epochs == 0 or epoch == config.num_epochs:
accelerator.wait_for_everyone()
if accelerator.is_main_process:
os.umask(0o000)
save_checkpoint(os.path.join(config.work_dir, 'checkpoints'),
epoch=epoch,
step=(epoch - 1) * len(train_dataloader) + step + 1,
model=accelerator.unwrap_model(model),
model_ema=accelerator.unwrap_model(model_ema),
optimizer=optimizer,
lr_scheduler=lr_scheduler
)
def parse_args():
parser = argparse.ArgumentParser(description="Process some integers.")
parser.add_argument("config", type=str, help="config")
parser.add_argument("--cloud", action='store_true', default=False, help="cloud or local machine")
parser.add_argument('--work-dir', help='the dir to save logs and models')
parser.add_argument('--resume-from', help='the dir to resume the training')
parser.add_argument('--load-from', default=None, help='the dir to load a ckpt for training')
parser.add_argument('--local-rank', type=int, default=-1)
parser.add_argument('--local_rank', type=int, default=-1)
parser.add_argument('--debug', action='store_true')
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--tracker_project_name",
type=str,
default="text2image-fine-tune",
help=(
"The `project_name` argument passed to Accelerator.init_trackers for"
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
),
)
parser.add_argument("--loss_report_name", type=str, default="loss")
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
config = read_config(args.config)
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
config.work_dir = args.work_dir
if args.cloud:
config.data_root = '/data/data'
if args.resume_from is not None:
config.load_from = None
config.resume_from = dict(
checkpoint=args.resume_from,
load_ema=False,
resume_optimizer=True,
resume_lr_scheduler=True)
if args.debug:
config.log_interval = 1
config.train_batch_size = 8
config.valid_num = 100
os.umask(0o000)
os.makedirs(config.work_dir, exist_ok=True)
init_handler = InitProcessGroupKwargs()
init_handler.timeout = datetime.timedelta(seconds=5400) # change timeout to avoid a strange NCCL bug
# Initialize accelerator and tensorboard logging
if config.use_fsdp:
init_train = 'FSDP'
from accelerate import FullyShardedDataParallelPlugin
from torch.distributed.fsdp.fully_sharded_data_parallel import FullStateDictConfig
set_fsdp_env()
fsdp_plugin = FullyShardedDataParallelPlugin(state_dict_config=FullStateDictConfig(offload_to_cpu=False, rank0_only=False),)
else:
init_train = 'DDP'
fsdp_plugin = None
even_batches = True
if config.multi_scale:
even_batches=False,
accelerator = Accelerator(
mixed_precision=config.mixed_precision,
gradient_accumulation_steps=config.gradient_accumulation_steps,
log_with=args.report_to,
project_dir=os.path.join(config.work_dir, "logs"),
fsdp_plugin=fsdp_plugin,
even_batches=even_batches,
kwargs_handlers=[init_handler]
)
logger = get_root_logger(os.path.join(config.work_dir, 'train_log.log'))
config.seed = init_random_seed(config.get('seed', None))
set_random_seed(config.seed)
if accelerator.is_main_process:
config.dump(os.path.join(config.work_dir, 'config.py'))
logger.info(f"Config: \n{config.pretty_text}")
logger.info(f"World_size: {get_world_size()}, seed: {config.seed}")
logger.info(f"Initializing: {init_train} for training")
image_size = config.image_size # @param [256, 512, 1024]
latent_size = int(image_size) // 8
pred_sigma = getattr(config, 'pred_sigma', True)
learn_sigma = getattr(config, 'learn_sigma', True) and pred_sigma
model_kwargs={"window_block_indexes": config.window_block_indexes, "window_size": config.window_size,
"use_rel_pos": config.use_rel_pos, "lewei_scale": config.lewei_scale, 'config':config,
'model_max_length': config.model_max_length}
# build models
train_diffusion = IDDPM(str(config.train_sampling_steps), learn_sigma=learn_sigma, pred_sigma=pred_sigma, snr=config.snr_loss)
model = build_model(config.model,
config.grad_checkpointing,
config.get('fp32_attention', False),
input_size=latent_size,
learn_sigma=learn_sigma,
pred_sigma=pred_sigma,
**model_kwargs).train()
logger.info(f"{model.__class__.__name__} Model Parameters: {sum(p.numel() for p in model.parameters()):,}")
model_ema = deepcopy(model).eval()
if config.load_from is not None:
if args.load_from is not None:
config.load_from = args.load_from
missing, unexpected = load_checkpoint(config.load_from, model, load_ema=config.get('load_ema', False))
logger.warning(f'Missing keys: {missing}')
logger.warning(f'Unexpected keys: {unexpected}')
ema_update(model_ema, model, 0.)
if not config.data.load_vae_feat:
vae = AutoencoderKL.from_pretrained(config.vae_pretrained).cuda()
# prepare for FSDP clip grad norm calculation
if accelerator.distributed_type == DistributedType.FSDP:
for m in accelerator._models:
m.clip_grad_norm_ = types.MethodType(clip_grad_norm_, m)
# build dataloader
set_data_root(config.data_root)
dataset = build_dataset(config.data, resolution=image_size, aspect_ratio_type=config.aspect_ratio_type)
if config.multi_scale:
batch_sampler = AspectRatioBatchSampler(sampler=RandomSampler(dataset), dataset=dataset,
batch_size=config.train_batch_size, aspect_ratios=dataset.aspect_ratio, drop_last=True,
ratio_nums=dataset.ratio_nums, config=config, valid_num=config.valid_num)
# used for balanced sampling
# batch_sampler = BalancedAspectRatioBatchSampler(sampler=RandomSampler(dataset), dataset=dataset,
# batch_size=config.train_batch_size, aspect_ratios=dataset.aspect_ratio,
# ratio_nums=dataset.ratio_nums)
train_dataloader = build_dataloader(dataset, batch_sampler=batch_sampler, num_workers=config.num_workers)
else:
train_dataloader = build_dataloader(dataset, num_workers=config.num_workers, batch_size=config.train_batch_size, shuffle=True)
# build optimizer and lr scheduler
lr_scale_ratio = 1
if config.get('auto_lr', None):
lr_scale_ratio = auto_scale_lr(config.train_batch_size * get_world_size() * config.gradient_accumulation_steps,
config.optimizer, **config.auto_lr)
optimizer = build_optimizer(model, config.optimizer)
lr_scheduler = build_lr_scheduler(config, optimizer, train_dataloader, lr_scale_ratio)
timestamp = time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime())
if accelerator.is_main_process:
tracker_config = dict(vars(config))
try:
accelerator.init_trackers(args.tracker_project_name, tracker_config)
except:
accelerator.init_trackers(f"tb_{timestamp}")
start_epoch = 0
if config.resume_from is not None and config.resume_from['checkpoint'] is not None:
start_epoch, missing, unexpected = load_checkpoint(**config.resume_from,
model=model,
model_ema=model_ema,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
)
logger.warning(f'Missing keys: {missing}')
logger.warning(f'Unexpected keys: {unexpected}')
# Prepare everything
# There is no specific order to remember, you just need to unpack the
# objects in the same order you gave them to the prepare method.
model, model_ema = accelerator.prepare(model, model_ema)
optimizer, train_dataloader, lr_scheduler = accelerator.prepare(optimizer, train_dataloader, lr_scheduler)
train()