forked from pingcap/tidb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecimal.go
755 lines (656 loc) · 20.1 KB
/
decimal.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
// The MIT License (MIT)
// Copyright (c) 2015 Spring, Inc.
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// - Based on https://github.com/oguzbilgic/fpd, which has the following license:
// """
// The MIT License (MIT)
// Copyright (c) 2013 Oguz Bilgic
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
// """
// Copyright 2015 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package mysql
// Decimal implements an arbitrary precision fixed-point decimal.
//
// To use as part of a struct:
//
// type Struct struct {
// Number Decimal
// }
//
// The zero-value of a Decimal is 0, as you would expect.
//
// The best way to create a new Decimal is to use decimal.NewFromString, ex:
//
// n, err := decimal.NewFromString("-123.4567")
// n.String() // output: "-123.4567"
//
// NOTE: this can "only" represent numbers with a maximum of 2^31 digits
// after the decimal point.
import (
"database/sql/driver"
"fmt"
"math"
"math/big"
"strconv"
"strings"
)
// DivisionPrecision is the number of decimal places in the result when it
// doesn't divide exactly.
//
// Example:
//
// d1 := decimal.NewFromFloat(2).Div(decimal.NewFromFloat(3)
// d1.String() // output: "0.6667"
// d2 := decimal.NewFromFloat(2).Div(decimal.NewFromFloat(30000)
// d2.String() // output: "0.0001"
// d3 := decimal.NewFromFloat(20000).Div(decimal.NewFromFloat(3)
// d3.String() // output: "6666.6666666666666667"
// decimal.DivisionPrecision = 3
// d4 := decimal.NewFromFloat(2).Div(decimal.NewFromFloat(3)
// d4.String() // output: "0.6667"
//
const (
MaxFractionDigits = 30
DivIncreasePrecision = 4
)
// ZeroDecimal is zero constant, to make computations faster.
var ZeroDecimal = NewDecimalFromInt(0, 1)
var zeroInt = big.NewInt(0)
var oneInt = big.NewInt(1)
var fiveInt = big.NewInt(5)
var tenInt = big.NewInt(10)
// Decimal represents a fixed-point decimal. It is immutable.
// number = value * 10 ^ exp
type Decimal struct {
value *big.Int
// this must be an int32, because we cast it to float64 during
// calculations. If exp is 64 bit, we might lose precision.
// If we cared about being able to represent every possible decimal, we
// could make exp a *big.Int but it would hurt performance and numbers
// like that are unrealistic.
exp int32
fracDigits int32 // Number of fractional digits for string result.
}
// ConvertToDecimal converts interface to decimal.
func ConvertToDecimal(value interface{}) (Decimal, error) {
switch v := value.(type) {
case int8:
return NewDecimalFromInt(int64(v), 0), nil
case int16:
return NewDecimalFromInt(int64(v), 0), nil
case int32:
return NewDecimalFromInt(int64(v), 0), nil
case int64:
return NewDecimalFromInt(int64(v), 0), nil
case int:
return NewDecimalFromInt(int64(v), 0), nil
case uint8:
return NewDecimalFromUint(uint64(v), 0), nil
case uint16:
return NewDecimalFromUint(uint64(v), 0), nil
case uint32:
return NewDecimalFromUint(uint64(v), 0), nil
case uint64:
return NewDecimalFromUint(uint64(v), 0), nil
case uint:
return NewDecimalFromUint(uint64(v), 0), nil
case float32:
return NewDecimalFromFloat(float64(v)), nil
case float64:
return NewDecimalFromFloat(float64(v)), nil
case string:
return ParseDecimal(v)
case Decimal:
return v, nil
case Hex:
return NewDecimalFromInt(int64(v.Value), 0), nil
case Bit:
return NewDecimalFromUint(uint64(v.Value), 0), nil
case Enum:
return NewDecimalFromUint(uint64(v.Value), 0), nil
case Set:
return NewDecimalFromUint(uint64(v.Value), 0), nil
default:
return Decimal{}, fmt.Errorf("can't convert %v to decimal", value)
}
}
// NewDecimalFromInt returns a new fixed-point decimal, value * 10 ^ exp.
func NewDecimalFromInt(value int64, exp int32) Decimal {
return Decimal{
value: big.NewInt(value),
exp: exp,
fracDigits: fracDigitsDefault(exp),
}
}
// NewDecimalFromUint returns a new fixed-point decimal, value * 10 ^ exp.
func NewDecimalFromUint(value uint64, exp int32) Decimal {
return Decimal{
value: big.NewInt(0).SetUint64(value),
exp: exp,
fracDigits: fracDigitsDefault(exp),
}
}
// ParseDecimal returns a new Decimal from a string representation.
//
// Example:
//
// d, err := ParseDecimal("-123.45")
// d2, err := ParseDecimal(".0001")
//
func ParseDecimal(value string) (Decimal, error) {
var intString string
var exp = int32(0)
n := strings.IndexAny(value, "eE")
if n > 0 {
// It is scientific notation, like 3.14e10
expInt, err := strconv.Atoi(value[n+1:])
if err != nil {
return Decimal{}, fmt.Errorf("can't convert %s to decimal, incorrect exponent", value)
}
value = value[0:n]
exp = int32(expInt)
}
parts := strings.Split(value, ".")
if len(parts) == 1 {
// There is no decimal point, we can just parse the original string as
// an int.
intString = value
} else if len(parts) == 2 {
intString = parts[0] + parts[1]
expInt := -len(parts[1])
exp += int32(expInt)
} else {
return Decimal{}, fmt.Errorf("can't convert %s to decimal: too many .s", value)
}
dValue := new(big.Int)
_, ok := dValue.SetString(intString, 10)
if !ok {
return Decimal{}, fmt.Errorf("can't convert %s to decimal", value)
}
val := Decimal{
value: dValue,
exp: exp,
fracDigits: fracDigitsDefault(exp),
}
if exp < -MaxFractionDigits {
val = val.rescale(-MaxFractionDigits)
}
return val, nil
}
// NewDecimalFromFloat converts a float64 to Decimal.
//
// Example:
//
// NewDecimalFromFloat(123.45678901234567).String() // output: "123.4567890123456"
// NewDecimalFromFloat(.00000000000000001).String() // output: "0.00000000000000001"
//
// NOTE: this will panic on NaN, +/-inf.
func NewDecimalFromFloat(value float64) Decimal {
floor := math.Floor(value)
// fast path, where float is an int.
if floor == value && !math.IsInf(value, 0) {
return NewDecimalFromInt(int64(value), 0)
}
str := strconv.FormatFloat(value, 'f', -1, 64)
dec, err := ParseDecimal(str)
if err != nil {
panic(err)
}
return dec
}
// NewDecimalFromFloatWithExponent converts a float64 to Decimal, with an arbitrary
// number of fractional digits.
//
// Example:
//
// NewDecimalFromFloatWithExponent(123.456, -2).String() // output: "123.46"
//
func NewDecimalFromFloatWithExponent(value float64, exp int32) Decimal {
mul := math.Pow(10, -float64(exp))
floatValue := value * mul
if math.IsNaN(floatValue) || math.IsInf(floatValue, 0) {
panic(fmt.Sprintf("Cannot create a Decimal from %v", floatValue))
}
dValue := big.NewInt(round(floatValue))
return Decimal{
value: dValue,
exp: exp,
fracDigits: fracDigitsDefault(exp),
}
}
// rescale returns a rescaled version of the decimal. Returned
// decimal may be less precise if the given exponent is bigger
// than the initial exponent of the Decimal.
// NOTE: this will truncate, NOT round
//
// Example:
//
// d := New(12345, -4)
// d2 := d.rescale(-1)
// d3 := d2.rescale(-4)
// println(d1)
// println(d2)
// println(d3)
//
// Output:
//
// 1.2345
// 1.2
// 1.2000
//
func (d Decimal) rescale(exp int32) Decimal {
d.ensureInitialized()
if exp < -MaxFractionDigits-1 {
// Limit the number of digits but we can not call Round here because it is called by Round.
// Limit it to MaxFractionDigits + 1 to make sure the final result is correct.
exp = -MaxFractionDigits - 1
}
// Must convert exps to float64 before - to prevent overflow.
diff := math.Abs(float64(exp) - float64(d.exp))
value := new(big.Int).Set(d.value)
expScale := new(big.Int).Exp(tenInt, big.NewInt(int64(diff)), nil)
if exp > d.exp {
value = value.Quo(value, expScale)
} else if exp < d.exp {
value = value.Mul(value, expScale)
}
return Decimal{
value: value,
exp: exp,
fracDigits: d.fracDigits,
}
}
// Abs returns the absolute value of the decimal.
func (d Decimal) Abs() Decimal {
d.ensureInitialized()
d2Value := new(big.Int).Abs(d.value)
return Decimal{
value: d2Value,
exp: d.exp,
fracDigits: d.fracDigits,
}
}
// Add returns d + d2.
func (d Decimal) Add(d2 Decimal) Decimal {
baseExp := min(d.exp, d2.exp)
rd := d.rescale(baseExp)
rd2 := d2.rescale(baseExp)
d3Value := new(big.Int).Add(rd.value, rd2.value)
return Decimal{
value: d3Value,
exp: baseExp,
fracDigits: fracDigitsPlus(d.fracDigits, d2.fracDigits),
}
}
// Sub returns d - d2.
func (d Decimal) Sub(d2 Decimal) Decimal {
baseExp := min(d.exp, d2.exp)
rd := d.rescale(baseExp)
rd2 := d2.rescale(baseExp)
d3Value := new(big.Int).Sub(rd.value, rd2.value)
return Decimal{
value: d3Value,
exp: baseExp,
fracDigits: fracDigitsPlus(d.fracDigits, d2.fracDigits),
}
}
// Mul returns d * d2.
func (d Decimal) Mul(d2 Decimal) Decimal {
d.ensureInitialized()
d2.ensureInitialized()
expInt64 := int64(d.exp) + int64(d2.exp)
if expInt64 > math.MaxInt32 || expInt64 < math.MinInt32 {
// It is better to panic than to give incorrect results, as
// decimals are usually used for money.
panic(fmt.Sprintf("exponent %v overflows an int32!", expInt64))
}
d3Value := new(big.Int).Mul(d.value, d2.value)
val := Decimal{
value: d3Value,
exp: int32(expInt64),
fracDigits: fracDigitsMul(d.fracDigits, d2.fracDigits),
}
if val.exp < -(MaxFractionDigits) {
val = val.Round(MaxFractionDigits)
}
return val
}
// Div returns d / d2. If it doesn't divide exactly, the result will have
// DivisionPrecision digits after the decimal point.
func (d Decimal) Div(d2 Decimal) Decimal {
// Division is hard, use Rat to do it.
ratNum := d.Rat()
ratDenom := d2.Rat()
quoRat := big.NewRat(0, 1).Quo(ratNum, ratDenom)
// Converting from Rat to Decimal inefficiently for now.
ret, err := ParseDecimal(quoRat.FloatString(MaxFractionDigits + 1))
if err != nil {
panic(err) // This should never happen.
}
// To pass test "2 / 3 * 3 < 2" -> "1".
ret = ret.Truncate(MaxFractionDigits)
ret.fracDigits = fracDigitsDiv(d.fracDigits)
return ret
}
// Cmp compares the numbers represented by d and d2, and returns:
//
// -1 if d < d2
// 0 if d == d2
// +1 if d > d2
//
func (d Decimal) Cmp(d2 Decimal) int {
baseExp := min(d.exp, d2.exp)
rd := d.rescale(baseExp)
rd2 := d2.rescale(baseExp)
return rd.value.Cmp(rd2.value)
}
// Equals returns whether the numbers represented by d and d2 are equal.
func (d Decimal) Equals(d2 Decimal) bool {
return d.Cmp(d2) == 0
}
// Exponent returns the exponent, or scale component of the decimal.
func (d Decimal) Exponent() int32 {
return d.exp
}
// FracDigits returns the number of fractional digits of the decimal.
func (d Decimal) FracDigits() int32 {
return d.fracDigits
}
// IntPart returns the integer component of the decimal.
func (d Decimal) IntPart() int64 {
scaledD := d.rescale(0)
return scaledD.value.Int64()
}
// Rat returns a rational number representation of the decimal.
func (d Decimal) Rat() *big.Rat {
d.ensureInitialized()
if d.exp <= 0 {
// It must negate after casting to prevent int32 overflow.
denom := new(big.Int).Exp(tenInt, big.NewInt(-int64(d.exp)), nil)
return new(big.Rat).SetFrac(d.value, denom)
}
mul := new(big.Int).Exp(tenInt, big.NewInt(int64(d.exp)), nil)
num := new(big.Int).Mul(d.value, mul)
return new(big.Rat).SetFrac(num, oneInt)
}
// Float64 returns the nearest float64 value for d and a bool indicating
// whether f represents d exactly.
// For more details, see the documentation for big.Rat.Float64.
func (d Decimal) Float64() (f float64, exact bool) {
return d.Rat().Float64()
}
// String returns the string representation of the decimal
// with the fixed point.
//
// Example:
//
// d := New(-12345, -3)
// println(d.String())
//
// Output:
//
// -12.345
//
func (d Decimal) String() string {
return d.StringFixed(d.fracDigits)
}
// StringFixed returns a rounded fixed-point string with places digits after
// the decimal point.
//
// Example:
//
// NewFromFloat(0).StringFixed(2) // output: "0.00"
// NewFromFloat(0).StringFixed(0) // output: "0"
// NewFromFloat(5.45).StringFixed(0) // output: "5"
// NewFromFloat(5.45).StringFixed(1) // output: "5.5"
// NewFromFloat(5.45).StringFixed(2) // output: "5.45"
// NewFromFloat(5.45).StringFixed(3) // output: "5.450"
// NewFromFloat(545).StringFixed(-1) // output: "550"
//
func (d Decimal) StringFixed(places int32) string {
rounded := d.Round(places)
return rounded.string(false)
}
// Round rounds the decimal to places decimal places.
// If places < 0, it will round the integer part to the nearest 10^(-places).
//
// Example:
//
// NewFromFloat(5.45).Round(1).String() // output: "5.5"
// NewFromFloat(545).Round(-1).String() // output: "550"
//
func (d Decimal) Round(places int32) Decimal {
// Truncate to places + 1.
ret := d.rescale(-places - 1)
// Add sign(d) * 0.5.
if ret.value.Sign() < 0 {
ret.value.Sub(ret.value, fiveInt)
} else {
ret.value.Add(ret.value, fiveInt)
}
// Floor for positive numbers, Ceil for negative numbers.
_, m := ret.value.DivMod(ret.value, tenInt, new(big.Int))
ret.exp++
if ret.value.Sign() < 0 && m.Cmp(zeroInt) != 0 {
ret.value.Add(ret.value, oneInt)
}
ret.fracDigits = places
return ret
}
// Floor returns the nearest integer value less than or equal to d.
func (d Decimal) Floor() Decimal {
d.ensureInitialized()
exp := big.NewInt(10)
// It must negate after casting to prevent int32 overflow.
exp.Exp(exp, big.NewInt(-int64(d.exp)), nil)
z := new(big.Int).Div(d.value, exp)
return Decimal{value: z, exp: 0}
}
// Ceil returns the nearest integer value greater than or equal to d.
func (d Decimal) Ceil() Decimal {
d.ensureInitialized()
exp := big.NewInt(10)
// It must negate after casting to prevent int32 overflow.
exp.Exp(exp, big.NewInt(-int64(d.exp)), nil)
z, m := new(big.Int).DivMod(d.value, exp, new(big.Int))
if m.Cmp(zeroInt) != 0 {
z.Add(z, oneInt)
}
return Decimal{value: z, exp: 0}
}
// Truncate truncates off digits from the number, without rounding.
//
// NOTE: precision is the last digit that will not be truncated (must be >= 0).
//
// Example:
//
// decimal.NewFromString("123.456").Truncate(2).String() // "123.45"
//
func (d Decimal) Truncate(precision int32) Decimal {
d.ensureInitialized()
if precision >= 0 && -precision > d.exp {
d = d.rescale(-precision)
}
d.fracDigits = precision
return d
}
// UnmarshalJSON implements the json.Unmarshaler interface.
func (d *Decimal) UnmarshalJSON(decimalBytes []byte) error {
str, err := unquoteIfQuoted(decimalBytes)
if err != nil {
return fmt.Errorf("Error decoding string '%s': %s", decimalBytes, err)
}
decimal, err := ParseDecimal(str)
*d = decimal
if err != nil {
return fmt.Errorf("Error decoding string '%s': %s", str, err)
}
return nil
}
// MarshalJSON implements the json.Marshaler interface.
func (d Decimal) MarshalJSON() ([]byte, error) {
str := "\"" + d.String() + "\""
return []byte(str), nil
}
// Scan implements the sql.Scanner interface for database deserialization.
func (d *Decimal) Scan(value interface{}) error {
str, err := unquoteIfQuoted(value)
if err != nil {
return err
}
*d, err = ParseDecimal(str)
return err
}
// Value implements the driver.Valuer interface for database serialization.
func (d Decimal) Value() (driver.Value, error) {
return d.String(), nil
}
// BigIntValue returns the *bit.Int value member of decimal.
func (d Decimal) BigIntValue() *big.Int {
return d.value
}
// UnmarshalText implements the encoding.TextUnmarshaler interface for XML
// deserialization.
func (d *Decimal) UnmarshalText(text []byte) error {
str := string(text)
dec, err := ParseDecimal(str)
*d = dec
if err != nil {
return fmt.Errorf("Error decoding string '%s': %s", str, err)
}
return nil
}
// MarshalText implements the encoding.TextMarshaler interface for XML
// serialization.
func (d Decimal) MarshalText() (text []byte, err error) {
return []byte(d.String()), nil
}
// StringScaled first scales the decimal then calls .String() on it.
// NOTE: buggy, unintuitive, and DEPRECATED! Use StringFixed instead.
func (d Decimal) StringScaled(exp int32) string {
return d.rescale(exp).String()
}
func (d Decimal) string(trimTrailingZeros bool) string {
if d.exp >= 0 {
return d.rescale(0).value.String()
}
abs := new(big.Int).Abs(d.value)
str := abs.String()
var intPart, fractionalPart string
// this cast to int will cause bugs if d.exp == INT_MIN
// and you are on a 32-bit machine. Won't fix this super-edge case.
dExpInt := int(d.exp)
if len(str) > -dExpInt {
intPart = str[:len(str)+dExpInt]
fractionalPart = str[len(str)+dExpInt:]
} else {
intPart = "0"
num0s := -dExpInt - len(str)
fractionalPart = strings.Repeat("0", num0s) + str
}
if trimTrailingZeros {
i := len(fractionalPart) - 1
for ; i >= 0; i-- {
if fractionalPart[i] != '0' {
break
}
}
fractionalPart = fractionalPart[:i+1]
}
number := intPart
if len(fractionalPart) > 0 {
number += "." + fractionalPart
}
if d.value.Sign() < 0 {
return "-" + number
}
return number
}
func (d *Decimal) ensureInitialized() {
if d.value == nil {
d.value = new(big.Int)
}
}
func min(x, y int32) int32 {
if x >= y {
return y
}
return x
}
func max(x, y int32) int32 {
if x >= y {
return x
}
return y
}
func round(n float64) int64 {
if n < 0 {
return int64(n - 0.5)
}
return int64(n + 0.5)
}
func unquoteIfQuoted(value interface{}) (string, error) {
bytes, ok := value.([]byte)
if !ok {
return "", fmt.Errorf("Could not convert value '%+v' to byte array",
value)
}
// If the amount is quoted, strip the quotes.
if len(bytes) > 2 && bytes[0] == '"' && bytes[len(bytes)-1] == '"' {
bytes = bytes[1 : len(bytes)-1]
}
return string(bytes), nil
}
func fracDigitsDefault(exp int32) int32 {
if exp < 0 {
return min(MaxFractionDigits, -exp)
}
return 0
}
func fracDigitsPlus(x, y int32) int32 {
return max(x, y)
}
func fracDigitsDiv(x int32) int32 {
return min(x+DivIncreasePrecision, MaxFractionDigits)
}
func fracDigitsMul(a, b int32) int32 {
return min(MaxFractionDigits, a+b)
}