-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmultilabel_train.py
315 lines (266 loc) · 10 KB
/
multilabel_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import argparse
import gc
import importlib
import os
import sys
import shutil
import numpy as np
import pandas as pd
import torch
from torch import nn
from monai.handlers.utils import from_engine
from monai.inferers import sliding_window_inference
from monai.data import decollate_batch
from torch.cuda.amp import GradScaler, autocast
from tqdm import tqdm
from utils import *
from monai.transforms import (
Compose,
Activations,
AsDiscrete,
Activationsd,
AsDiscreted,
KeepLargestConnectedComponentd,
Invertd,
LoadImage,
Transposed,
)
import json
from metric import HausdorffScore
from monai.utils import set_determinism
from monai.losses import DiceLoss, DiceCELoss
from monai.networks.nets import UNet, SegResNet, DynUnet
from monai.optimizers import Novograd
from monai.metrics import DiceMetric
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
def main(cfg):
# data sequence
if cfg.fold != -1:
cfg.data_json_dir = cfg.data_dir + f"dataset_3d_fold_{cfg.fold}.json"
else:
cfg.data_json_dir = cfg.data_dir + f"dataset_3d_all.json"
with open(cfg.data_json_dir, "r") as f:
cfg.data_json = json.load(f)
if cfg.fold != -1:
fold_dir = f"fold{cfg.fold}"
else:
fold_dir = "all"
os.makedirs(str(cfg.output_dir + f"/{fold_dir}/"), exist_ok=True)
# # set random seed
# set_determinism(cfg.seed)
train_dataset = get_train_dataset(cfg)
train_dataloader = get_train_dataloader(train_dataset, cfg)
val_dataset = get_val_dataset(cfg)
val_dataloader = get_val_dataloader(val_dataset, cfg)
print(f"run fold {cfg.fold}, train len: {len(train_dataset)}")
if cfg.model_type.startswith("segres"):
model = SegResNet(
spatial_dims = 3,
in_channels = 1,
out_channels = 3,
init_filters = int(cfg.model_type.replace("segres", "")),
norm = "BATCH",
act = "PRELU"
).to(cfg.device)
print(cfg.weights)
if cfg.weights is not None:
stt = torch.load(cfg.weights, map_location = "cpu")
if "model" in stt:
stt = stt["model"]
if "state_dict" in stt:
stt = stt["state_dict"]
del stt["out.conv.conv.weight"], stt["out.conv.conv.bias"]
model.load_state_dict(stt, strict = False)
print(f"weights from: {cfg.weights} are loaded.")
# set optimizer, lr scheduler
total_steps = len(train_dataset)
optimizer = get_optimizer(model, cfg)
# optimizer = Novograd(model.parameters(), cfg.lr)
scheduler = get_scheduler(cfg, optimizer, total_steps)
seg_loss_func = DiceBceMultilabelLoss(w_dice=cfg.w_dice, w_bce=1-cfg.w_dice)
# seg_loss_func = DiceLoss(sigmoid=True, smooth_nr=0.01, smooth_dr=0.01, include_background=True, batch=True)
dice_metric = DiceMetric(reduction="mean")
hausdorff_metric = HausdorffScore(reduction="mean")
metric_function = [dice_metric, hausdorff_metric]
post_pred = Compose([
Activations(sigmoid=True),
AsDiscrete(threshold=0.5),
])
# train and val loop
step = 0
i = 0
if cfg.eval is True:
best_val_metric = run_eval(
model=model,
val_dataloader=val_dataloader,
post_pred=post_pred,
metric_function=metric_function,
seg_loss_func=seg_loss_func,
cfg=cfg,
epoch=0,
)
else:
best_val_metric = 0.0
best_weights_name = "best_weights"
for epoch in range(cfg.epochs):
print("EPOCH:", epoch)
gc.collect()
if cfg.train is True:
run_train(
model=model,
train_dataloader=train_dataloader,
optimizer=optimizer,
scheduler=scheduler,
seg_loss_func=seg_loss_func,
cfg=cfg,
# writer=writer,
epoch=epoch,
step=step,
iteration=i,
)
if (epoch + 1) % cfg.eval_epochs == 0 and cfg.eval is True and epoch > cfg.start_eval_epoch:
val_metric = run_eval(
model=model,
val_dataloader=val_dataloader,
post_pred=post_pred,
metric_function=metric_function,
seg_loss_func=seg_loss_func,
cfg=cfg,
epoch=epoch,
)
if val_metric > best_val_metric:
print(f"Find better metric: val_metric {best_val_metric:.5} -> {val_metric:.5}")
best_val_metric = val_metric
checkpoint = create_checkpoint(
model,
optimizer,
epoch,
scheduler=scheduler,
)
torch.save(
checkpoint,
f"{cfg.output_dir}/{fold_dir}/{best_weights_name}.pth",
)
else:
if cfg.load_best_weights is True:
try:
model.load_state_dict(torch.load(f"{cfg.output_dir}/{fold_dir}/{best_weights_name}.pth")["model"])
print(f"metric no improve, load the saved best weights with score: {best_val_metric}.")
except:
pass
if (epoch + 1) == cfg.epochs:
# save final best weights, with its distinct name in order to avoid mistakes.
if os.path.exists(f"{cfg.output_dir}/{fold_dir}/{best_weights_name}.pth"):
shutil.copyfile(
f"{cfg.output_dir}/{fold_dir}/{best_weights_name}.pth",
f"{cfg.output_dir}/{fold_dir}/{best_weights_name}_{best_val_metric:.4f}.pth",
)
torch.save(
model.state_dict(),
f"{cfg.output_dir}/{fold_dir}/last.pth",
)
def run_train(
model,
train_dataloader,
optimizer,
scheduler,
seg_loss_func,
cfg,
# writer,
epoch,
step,
iteration,
):
model.train()
scaler = GradScaler()
progress_bar = tqdm(range(len(train_dataloader)))
tr_it = iter(train_dataloader)
dataset_size = 0
running_loss = 0.0
for itr in progress_bar:
iteration += 1
batch = next(tr_it)
inputs, masks = (
batch["image"].to(cfg.device),
batch["mask"].to(cfg.device),
)
step += cfg.batch_size
if cfg.amp is True:
with autocast():
outputs = model(inputs)
loss = seg_loss_func(outputs, masks)
else:
outputs = model(inputs)
loss = seg_loss_func(outputs, masks)
if cfg.amp is True:
scaler.scale(loss).backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 12)
scaler.step(optimizer)
scaler.update()
else:
loss.backward()
optimizer.step()
optimizer.zero_grad()
scheduler.step()
running_loss += (loss.item() * cfg.batch_size)
dataset_size += cfg.batch_size
losses = running_loss / dataset_size
progress_bar.set_description(f"loss: {losses:.4f} lr: {optimizer.param_groups[0]['lr']:.6f}")
del batch, inputs, masks, outputs, loss
print(f"Train loss: {losses:.4f}")
torch.cuda.empty_cache()
def run_eval(model, val_dataloader, post_pred, metric_function, seg_loss_func, cfg, epoch):
model.eval()
dice_metric, hausdorff_metric = metric_function
progress_bar = tqdm(range(len(val_dataloader)))
val_it = iter(val_dataloader)
with torch.no_grad():
for itr in progress_bar:
batch = next(val_it)
val_inputs, val_masks = (
batch["image"].to(cfg.device),
batch["mask"].to(cfg.device),
)
if cfg.val_amp is True:
with autocast():
val_outputs = sliding_window_inference(val_inputs, cfg.roi_size, cfg.sw_batch_size, model)
else:
val_outputs = sliding_window_inference(val_inputs, cfg.roi_size, cfg.sw_batch_size, model)
# cal metric
if cfg.run_tta_val is True:
tta_ct = 1
for dims in [[2],[3],[2,3]]:
flip_val_outputs = sliding_window_inference(torch.flip(val_inputs, dims=dims), cfg.roi_size, cfg.sw_batch_size, model)
val_outputs += torch.flip(flip_val_outputs, dims=dims)
tta_ct += 1
val_outputs /= tta_ct
val_outputs = [post_pred(i) for i in val_outputs]
val_outputs = torch.stack(val_outputs)
# metric is slice level put (n, c, h, w, d) to (n, d, c, h, w) to (n*d, c, h, w)
val_outputs = val_outputs.permute([0, 4, 1, 2, 3]).flatten(0, 1)
val_masks = val_masks.permute([0, 4, 1, 2, 3]).flatten(0, 1)
hausdorff_metric(y_pred=val_outputs, y=val_masks)
dice_metric(y_pred=val_outputs, y=val_masks)
del val_outputs, val_inputs, val_masks, batch
dice_score = dice_metric.aggregate().item()
hausdorff_score = hausdorff_metric.aggregate().item()
dice_metric.reset()
hausdorff_metric.reset()
all_score = dice_score * 0.4 + hausdorff_score * 0.6
print(f"dice_score: {dice_score} hausdorff_score: {hausdorff_score} all_score: {all_score}")
torch.cuda.empty_cache()
return all_score
if __name__ == "__main__":
sys.path.append("configs")
parser = argparse.ArgumentParser(description="")
parser.add_argument("-c", "--config", default="cfg_unet_multilabel", help="config filename")
parser.add_argument("-f", "--fold", type=int, default=0, help="fold")
parser.add_argument("-s", "--seed", type=int, default=20220421, help="seed")
parser.add_argument("-w", "--weights", default=None, help="the path of weights")
parser_args, _ = parser.parse_known_args(sys.argv)
cfg = importlib.import_module(parser_args.config).cfg
cfg.fold = parser_args.fold
cfg.seed = parser_args.seed
cfg.weights = parser_args.weights
main(cfg)