-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuilder.py
43 lines (34 loc) · 1.08 KB
/
builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
""" The Code is under Tencent Youtu Public Rule
build optimizer:
optimizer_dict = {
"SGD": optim.SGD,
"Adam": optim.Adam,
"AdamW": optim.AdamW
}
"""
from copy import deepcopy
import torch.optim as optim
from .lars_optimizer import LARS
optimizer_dict = {
"SGD": optim.SGD,
"Adam": optim.Adam,
"AdamW": optim.AdamW
}
def build(cfg, model):
optimizer_cfg = deepcopy(cfg)
optim_type = optimizer_cfg.pop("type")
use_lars = False
if "lars" in optimizer_cfg.keys():
use_lars = optimizer_cfg.pop("lars")
no_decay = optimizer_cfg.pop("no_decay", ['bias', 'bn'])
grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(
nd in n for nd in no_decay)],
'weight_decay': optimizer_cfg.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(
nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = optimizer_dict[optim_type](grouped_parameters, **optimizer_cfg)
if use_lars:
optimizer = LARS(optimizer)
return optimizer