forked from campbio/decontX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DESCRIPTION
65 lines (65 loc) · 1.92 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
Package: decontX
Title: Decontamination of single cell genomics data
Version: 1.0.0
Authors@R:
c(person("Yuan", "Yin", , "[email protected]", role = c("aut", "cre"),
comment = c(ORCID = "0000-0001-9261-6061")),
person("Masanao", "Yajima", , "[email protected]", role = c("aut"),
comment = c(ORCID = "0000-0002-7583-3707")),
person("Joshua", "Campbell", , "[email protected]", role = c("aut"),
comment = c(ORCID = "0000-0003-0780-8662")))
Description: This package contains implementation of DecontX (Yang et al. 2020),
a decontamination algorithm for single-cell RNA-seq, and DecontPro (Yin et al.
2023), a decontamination algorithm for single cell protein expression data.
DecontX is a novel Bayesian method to computationally estimate and remove RNA
contamination in individual cells without empty droplet information. DecontPro
is a Bayesian method that estimates the level of contamination from ambient
and background sources in CITE-seq ADT dataset and decontaminate the dataset.
License: MIT + file LICENSE
Encoding: UTF-8
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.2.3
Suggests:
BiocStyle,
dplyr,
knitr,
rmarkdown,
scran,
SingleCellMultiModal,
TENxPBMCData,
testthat (>= 3.0.0)
Config/testthat/edition: 3
Imports:
celda,
dbscan,
DelayedArray,
ggplot2,
Matrix (>= 1.5.3),
MCMCprecision,
methods,
patchwork,
plyr,
Rcpp (>= 0.12.0),
RcppParallel (>= 5.0.1),
reshape2,
rstan (>= 2.18.1),
rstantools (>= 2.2.0),
S4Vectors,
scater,
Seurat,
SingleCellExperiment,
SummarizedExperiment,
withr
Biarch: true
Depends:
R (>= 4.3.0)
LinkingTo:
BH (>= 1.66.0),
Rcpp (>= 0.12.0),
RcppEigen (>= 0.3.3.3.0),
RcppParallel (>= 5.0.1),
rstan (>= 2.18.1),
StanHeaders (>= 2.18.0)
SystemRequirements: GNU make
VignetteBuilder: knitr
biocViews: SingleCell, Bayesian