-
Notifications
You must be signed in to change notification settings - Fork 0
/
classify.py
55 lines (50 loc) · 1.82 KB
/
classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#!/user/bin/env python
# -*- coding:utf-8 -*-
import torch
import matplotlib.pyplot as plt
import torch
import torch.nn.functional as F
n_data=torch.ones(100,2)
x0=torch.normal(2*n_data,1)
y0=torch.zeros(100)
x1=torch.normal(-2*n_data,1)
y1=torch.ones(100)
x=torch.cat((x0,x1),0).type(torch.FloatTensor)
y=torch.cat((y0,y1),).type(torch.LongTensor)
# plt.scatter(x.data.numpy()[:,0],x.data.numpy()[:,1],c=y.data.numpy(), s=100, lw=0, cmap='RdYlGn')
# plt.show()
class Net(torch.nn.Module):
def __init__(self,n_feature,n_hidden,n_output):
super(Net,self).__init__()
self.hidden=torch.nn.Linear(n_feature,n_hidden)
self.out=torch.nn.Linear(n_hidden,n_output)
def forward(self,x):
x=F.relu(self.hidden(x))
x=self.out(x)#输出值, 但是这个不是预测值, 预测值还需要再另外计算
return x
net=Net(n_feature=2,n_hidden=10,n_output=2)
print(net)
#训练网络
optimizer=torch.optim.SGD(net.parameters(),lr=0.02)
loss_func=torch.nn.CrossEntropyLoss()#CrossEntropyLoss()名字为交叉熵损失函数,不用于one_hotted编码形式
plt.ion()
for t in range(100):
out=net(x)
loss=loss_func(out,y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 接着上面来
if t % 2 == 0:
plt.cla()
# 过了一道 softmax 的激励函数后的最大概率才是预测值
prediction = torch.max(F.softmax(out), 1)[1]
pred_y = prediction.data.numpy().squeeze()
target_y = y.data.numpy()
plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlGn')
accuracy = sum(pred_y == target_y)/200. # 预测中有多少和真实值一样
plt.text(1.5, -4, 'Accuracy=%.2f' % accuracy, fontdict={'size': 20, 'color': 'red'})
plt.pause(0.1)
plt.ioff()
plt.show()
print('lalala')