-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPL_Resolution_WalkSAT.py
744 lines (633 loc) · 28.8 KB
/
PL_Resolution_WalkSAT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
#!/usr/bin/env python
# encoding: utf-8
'''
Propositional_Logic with PLResolution/WalkSAT/Prop_KB/Wedding -- An implementation of Resolution KB, logic, PL Resolution and WalkSAT in CNF for a wedding arrangement task .
The whole implementation will solve a wedding arrangement problem by below classes.
It defines classes_and_methods below:
Propositional_Logic: A propositional logic operation class in CNF with DPLL and WalkSAT algorithm.
Operators include: AND, OR, NOT can be defined in global variable
The CNF sentence '(A OR B) AND (NOT C)' can be represented as below data structure:
sentence[clause1{Literal1, Literal2}, clause2{~Literal3}]
1. sentence is a list to contain sets.
2. Clause is a set with Literals.
3. Literal presents by string.
The sentence should be in CNF, which equal to
1. every set in list should be associated with AND, and
2. every literal in set should be associated with OR
Major Functions:
1. is_satisfiable(KB, algorithm = 'DPLL'): This implementation include DPLL and PL_Resolution algorithm to verify the satisfiability of the sentence.
You can choose either 'DPLL' or 'PL_Resolution' to switch the algorithm.
2. DPLL: This algorithm is used for checking satisfiability of a CNF sentence in propositional logic.
The method will also store the satisfiable model into the 'model' variable in class.
3. WalkSAT: Inference methods which are implemented to provide one of models in CNF sentence of propositional logic.
4. PL_Resolution: A structure only class. Need to be completed in the future.
The class will check a propositional logic sentence is satisfy or not.
Prop_KB: A knowledge base can be Ask, Tell in propositional logic by CNF.
Major Functions:
tell(clauses): input CNF clauses.
ask(CNF_query) will not implement in this case.
get_sentence(): will present the KB in a CNF sentence.
Wedding: A wedding arrangement class to solve a the question.
1. According to given rule to generate CNF sentence.
2. Input the sentence to KB.
3. Verifing the KB is satisfiable or not.
4. If the KB is satisfiable, then get a model/solution by WalkSAT.
5. Printing the results.
@author: Cheng-Lin Li a.k.a. Clark Li
@copyright: 2017 Cheng-Lin Li@University of Southern California. All rights reserved.
@license: Licensed under the GNU v3.0. https://www.gnu.org/licenses/gpl.html
@contact: [email protected]
@version: 1.0
@create: March, 1, 2017
@updated: March, 6, 2017
'''
from __future__ import print_function
import sys
import random
from datetime import datetime
__all__ = []
__version__ = 0.1
__date__ = '2017-02-26'
__updated__ = '2017-03-06'
DEBUG = 1
PRINT_TIME = False
RESOURCE_DPLL = 70
RESOURCE_WALKSAT = 49
INPUT_FILE = 'input.txt'
#OUTPUT_FILE = 'output.txt' # OUTPUT_FILE COULD BE 'OUTPUT_FILE = None' for console or file name (e.g. 'OUTPUT_FILE = 'output.txt') for file.'
OUTPUT_FILE = None # OUTPUT_FILE COULD BE 'OUTPUT_FILE = None' for console or file name (e.g. 'OUTPUT_FILE = 'output.txt') for file.'
PROBABILITY = 0.5
MAX_FLIPS = 1000000
INPUT_SPLITTER = ' ' #the splitter for input data.
VARIABLE_SPLITTER = ',' #the separator for variables guest and table arrangement
AND = '^'
OR = 'v'
NOT = '~'
ALGORITHM = 'DPLL' # or 'PL_Resolution'
def getInputData(filename):
#
# Get data from input file.
# Leverage two dimension array data structure to store data for each line.
_i_guests = 0
_i_tables = 0
_i_enemy = 1
_s_enemy = set()
_restrictions = []
_i = 0
try:
with open(filename, 'r') as _fp:
for _each_line in _fp:
_row = _each_line.strip().split(INPUT_SPLITTER)
if _i == 0: # Get no. of guests and tables.
_i_guests = int(_row[0])
_i_tables = int(_row[1])
_i += 1
else: # Restrictions
_restrictions.append([_row[0], _row[1], _row[2]])
if _row[2] == 'E':
_s_enemy.add(_row[0])
_s_enemy.add(_row[1])
# Table numbers no need to exceed guests or enemy relation.
if _i_tables > _i_guests: _i_tables = _i_guests
# ***New added. Max table numbers should be equal to 1 or the number in the set of enemy group.
_i_enemy = len(_s_enemy)
if _i_tables > max(1, _i_enemy): _i_tables = max(1, _i_enemy)
_fp.close()
return _i_guests, _i_tables, _restrictions
except IOError as _err:
if (DEBUG):
print ('File error: ' + str (_err))
else :
pass
exit()
def setOutputData(filename='', isSatisfy=None, arrangement={}):
#
# output results.
#
try:
if filename != None :
orig_stdout = sys.stdout
f = file(filename, 'w')
sys.stdout = f
else:
pass
##########
if not isSatisfy :
print('no')
else:
print('yes')
_sorted_guests = sorted(arrangement)
for guest in _sorted_guests:
# print guest and table number.
print('%s %s'%(guest, arrangement[guest]))
###########
sys.stdout.flush()
if filename != None :
sys.stdout = orig_stdout
f.close()
else:
pass
except IOError as _err:
if (DEBUG == True):
print ('File error: ' + str (_err))
else :
pass
exit()
class Wedding (object):
# a class for wedding information & rules generator from input file.
def __init__(self, guests=0, tables=0, restrictions=0):
self.guests = guests
self.tables = tables
self.restrictions = restrictions
self.CNFSentance = []
self.CNFRestriction = []
self.CNFDomainSpace = []
self.arrangement = {}
def execution(self):
# Main program to enable wedding arrangement.
#
_is_satisfiable = False
_arrangement = {}
_kb = Prop_KB()
_plg = Propositional_Logic()
if self.guests == 0 or self.tables == 0:
return False, []
else:
self.CNFSentance = self.getWeddingRules()
if DEBUG: print(self.CNFSentance)
_kb.tell(self.CNFSentance)
_is_satisfiable = _plg.is_satisfiable(_kb, ALGORITHM)
if DEBUG: print('_is_satisfiable= %r'%(_is_satisfiable))
if _is_satisfiable is True or _is_satisfiable is None: # if satisfiable or run out of time
if DEBUG: print('_is_satisfiable is True= %r'%(_is_satisfiable))
_plg.set_timer()
_arrangement = _plg.WalkSAT(_kb.get_sentence()) # Get result model from WalkSAT, or try to get result from WalkSAT
if _arrangement is not None:
_is_satisfiable = True #***new added but not in the submit version.
_arrangement = self.getResults(_arrangement)
elif ALGORITHM == 'DPLL' and _arrangement is None and _is_satisfiable is True:#if WalkSAT no result but DPLL has a model
_arrangement = _plg.model # Get satisfy result model from DPLL if WalkSAT fail.
_arrangement = self.getResults(_arrangement)
else:
_arrangement = {}
if DEBUG: print ('Wedding arrangement=%s, %r'%(_arrangement, (_arrangement is not None)))
return _is_satisfiable, _arrangement
def getWeddingRules(self):
# Every clause is 'OR' connect with each other clause, every sentence is 'AND' connect with each other sentence.
# atomic = [guest, table]
# CNF: (AvB) ^ (~C) = [{'A','B'}, {'~C'}]
#The outer list is a conjunction of clauses. Each inner list is a clause, i.e. a disjunction of literals.
_everyone_possible_on_any_table = []
_everyone_only_exist_one_table = []
_friend_in_same_table = []
_enemy_in_different_table = []
_CNFClauses = []
_tmp_guest = None
_tmp_set = set()
# For each guest should be able to assign into any table.
# v Xai = CNF
for _guest in range(1, self.guests+1):
for _tablei in range(1, self.tables+1):
if _tmp_guest != _guest:
_tmp_guest = _guest
_tmp_set = {str(_guest)+VARIABLE_SPLITTER+str(_tablei)}
else:
_tmp_set.add(str(_guest)+VARIABLE_SPLITTER+str(_tablei))
_everyone_possible_on_any_table.append(_tmp_set)
# And everyone should be at only one table
# CNF
# ^[~(Xai ^ Xaj)] = ^[(~Xai v ~Xaj)]
for _guest in range(1, self.guests+1):
for _tablei in range(1, self.tables+1):
for _tablej in range(1, self.tables+1):
if (_tablei != _tablej):
_everyone_only_exist_one_table.append({NOT+str(_guest)+VARIABLE_SPLITTER+str(_tablei), NOT+str(_guest)+VARIABLE_SPLITTER+str(_tablej)})
# for each pair of friends, guest a and b should in same table.
# ^[(~Xai v Xbi)^(Xai v ~Xbi)] = CNF
for _rule in self.restrictions:
if _rule[2] == 'F':
for _tablei in range(1, self.tables+1):
_friend_in_same_table.append({NOT+str(_rule[0])+VARIABLE_SPLITTER+str(_tablei),str(_rule[1])+VARIABLE_SPLITTER+str(_tablei)})
_friend_in_same_table.append({str(_rule[0])+VARIABLE_SPLITTER+str(_tablei),NOT+str(_rule[1])+VARIABLE_SPLITTER+str(_tablei)})
# for each pair of enemies, guest a and b should not in same table.
# ^ [~(Xai ^ Xbi)]=^[~Xai v ~Xbi] = CNF
elif _rule[2] == 'E':
for _tablej in range(1, self.tables+1):
_enemy_in_different_table.append({NOT+str(_rule[0])+VARIABLE_SPLITTER+str(_tablej), NOT+str(_rule[1])+VARIABLE_SPLITTER+str(_tablej)})
else:
pass
if _everyone_possible_on_any_table != []: _CNFClauses.extend(_everyone_possible_on_any_table)
if _everyone_only_exist_one_table != []: _CNFClauses.extend(_everyone_only_exist_one_table)
if _friend_in_same_table != []: _CNFClauses.extend(_friend_in_same_table)
if _enemy_in_different_table != []: _CNFClauses.extend(_enemy_in_different_table)
# if _everyone_only_exist_one_table != []: self.CNFDomainSpace.extend(_everyone_only_exist_one_table)
# if _everyone_possible_on_any_table != []: self.CNFDomainSpace.extend(_everyone_possible_on_any_table)
#
# if _friend_in_same_table != []: self.CNFRestriction.extend(_friend_in_same_table)
# if _enemy_in_different_table != []: self.CNFRestriction.extend(_enemy_in_different_table)
return _CNFClauses
def getResults(self, model):
# Get a model and refined it to the result of arrangement.
_is_satisfy = False
_guest_table = []
_arrangement = {}
for _symbol in model:
if model[_symbol] == True:
_guest_table = _symbol.split(VARIABLE_SPLITTER)
_arrangement.update({_guest_table[0]:_guest_table[1]}) #{guest: table}
return _arrangement
class Propositional_Logic(object):
def __init__(self):
self.sentence = []
self.symbols = set()
self.model = {} # The truth results
self.begin_time = None
def set_timer(self):
self.begin_time = datetime.now()
def is_operator(self, symbol=''):
_is_true = False
if self.is_and(symbol) or self.is_or(symbol) or self.is_not(symbol): _is_true = True
return _is_true
def is_and(self, symbol=''):
_is_true = False
if AND in symbol: _is_true = True
return _is_true
def is_or(self, symbol=''):
_is_true = False
if OR in symbol: _is_true = True
return _is_true
def is_not(self, symbol=''):
_is_true = False
if NOT in symbol: _is_true = True
return _is_true
def is_include_not(self, clauses=[]):
_is_true = False
for _clause in clauses:
for _symbol in _clause:
if NOT in _symbol: _is_true = True
return _is_true
def get_symbols(self, sentence):
# input clauses is a CNF clauses
# get all symbols which include positive and negative symbols from clauses and put into symbol set.
_symbol_set = set()
for _clause in sentence:
for _symbol in _clause:
_symbol_set.add(_symbol)
return _symbol_set
def get_positive_symbols(self, sentence=[]):
# input clauses is a CNF clauses
# get symbols from clauses and convert it to positive form before put into symbol set.
_symbol_set = set()
_sentence = []
if type(sentence) == set: #single clause as sentence
_sentence.append(sentence)
else:
_sentence = sentence
for _clause in _sentence:
for _symbol in _clause:
if (self.is_not(_symbol)): _symbol = _symbol[1:]
_symbol_set.add(_symbol)
return _symbol_set
def is_satisfiable(self, KB, algorithm = 'DPLL', model={}):
self.begin_time = datetime.now()
_is_satisfiable = False
_sentence = KB.get_sentence()
self.symbols = self.get_symbols(_sentence)
if DEBUG: print('self.symbols=%s'%(str(sorted(list(self.symbols)))))
if algorithm == 'DPLL':
if PRINT_TIME : print ('is_satisfiable=>DPLL.Start=>%s'%(str(datetime.now())))
_is_satisfiable = self.DPLL(_sentence, self.symbols, model)
if PRINT_TIME : print ('is_satisfiable=>DPLL.Finish=>%s'%(str(datetime.now())))
elif algorithm == 'PL_Resolution':
_is_satisfiable = self.PL_Resolution(KB)
return _is_satisfiable
def DPLL(self, sentence=[], symbols=set(), model={}):
_symbols = set(symbols)
_model = dict(model)
_is_true = False
_unknown_clauses = [] # clauses with an unknown truth value
_return = None
_p = None
_v = None
if PRINT_TIME : print ('DPLL. is_true_PL. Start=>%s'%(str(datetime.now())))
for _clause in sentence:
_return = self.is_true_PL(_clause, _model)
if _return is False: return False
elif _return is None:
_unknown_clauses.append(_clause)
else:
pass
if PRINT_TIME : print ('DPLL. is_true_PL. finish=>%s'%(str(datetime.now())))
if _unknown_clauses == []:
self.model = model
if DEBUG: print('model = %s'%(sorted(model.items())))
return True # model is one of the answer by DPLL.
else:
#if _model is None: _model = {}
#if _symbols is None: _symbols = set()
_p, _v = self.get_pure_symbol(_symbols, _unknown_clauses)
if _p :
_symbols = self.remove_both_symbol(_symbols, _p)
_model.update({_p:_v})
return self.DPLL(_unknown_clauses, _symbols, _model)
else: pass
_p, _v = self.get_unit_clause(_unknown_clauses, _model)
if _p :
_symbols = self.remove_both_symbol(_symbols, _p)
_model.update({_p:_v})
return self.DPLL(_unknown_clauses, _symbols, _model)
else: pass
_symbols, _p, _v = self.pop_symbol(_symbols)
_true_model = dict(_model)
_true_model.update({_p: _v})
_false_model = dict(model)
_false_model.update({_p: not _v})
if (datetime.now() - self.begin_time).total_seconds() >= RESOURCE_DPLL:
return None
return (self.DPLL(_unknown_clauses, _symbols, _true_model) or self.DPLL(_unknown_clauses, _symbols, _false_model))
def get_pure_symbol(self, clause=set(), sentence=[]):
#DPLL algorithm get pure symbol which only exist positive form in whole sentence (or negative form in whole sentence.)
_is_not_symbol = ''
_positive_symbol = ''
_negative_symbol = ''
if PRINT_TIME : print ('get_pure_symbol=>Start=>%s'%(str(datetime.now())))
for _symbol in clause:
_has_positive = False
_has_negative = False
_is_not_symbol = False
for _clause in sentence:
if self.is_not(_symbol):
_negative_symbol = _symbol
_positive_symbol = _symbol[1:] # If the symbol include a ~ in front of it. It's negative symbol and program will remove ~ from symbol
_is_not_symbol = True # The symbol include a ~ in front of it.
else:
_possibly_sorted = _symbol
_negative_symbol = NOT+_symbol
if _positive_symbol in _clause: _has_positive = True
if _negative_symbol in _clause: _has_negative = True
# return negative symbol asap.
if (_has_positive == False) and (_has_negative == True): # flip the symbol and value
return _positive_symbol, False
if PRINT_TIME : print ('get_pure_symbol=>finish=>%s'%(str(datetime.now())))
if (_has_positive == True) and (_has_negative == False) :
return _positive_symbol, True
else:
return None, None
def get_unit_clause(self, sentence, model):
# Return one of unit clause in a sentence.
# a unit clause only contains single literal.
_literal = ''
if PRINT_TIME : print ('get_unit_clause=>Start=>%s'%(str(datetime.now())))
for _clause in sentence:
if len(_clause) == 1:
_literal = next(iter(_clause))
if (self.is_not(_literal)): # Find negative unit clause asap.
return _literal[1:], False
else:
pass
if PRINT_TIME : print ('get_unit_clause=>finish=>%s'%(str(datetime.now())))
if _literal != '':
return _literal, True
else:
return None, None
def remove_symbol(self, symbols=set(), remove_symbol=''):
# Remove the symbol from symbol set
symbols.discard(remove_symbol)
return symbols
def remove_both_symbol(self, symbols=set(), remove_symbol=''):
# Remove a symbol and its negative form from symbol set
_positive_symbol = ''
_negative_symbol = ''
if(self.is_not(remove_symbol)):
# if symbol include ~ operator
_positive_symbol = remove_symbol[1:]
_negative_symbol = remove_symbol
else:
_positive_symbol = remove_symbol
_negative_symbol = NOT+remove_symbol
symbols.discard(_positive_symbol)
symbols.discard(_negative_symbol)
return symbols
def pop_symbol(self, symbols=set()):
# Pop a symbol with a boolean=True value from symbol set
# If the symbol is negative form, then convert it to positive symbol and flip the boolean value to False.
_symbol = ''
_bl = True
if symbols == set(): return symbols, None
else:
for _s in symbols:
if self.is_not(_s):
_symbol = _s
symbols.discard(_symbol)
break;
if _symbol == '':
_symbol = symbols.pop()
if(self.is_not(_symbol)):
# if symbol include ~ operator
_symbol = _symbol[1:]
_bl = False
symbols.discard(_symbol)
else:
symbols.discard(NOT+_symbol)
return symbols, _symbol, _bl
def get_random_symbol(self, clause=set()):
# Will get a symbol from symbol set with its boolean value=True. The selected symbol will still keep in the symbol set.
# If the symbol is negative form, convert it to positive form and flip the boolean value = False.
_symbol = ''
_bl = True
if clause == set(): return None
else:
_symbol = random.sample(clause, 1)
_symbol = _symbol[0] #get symbol from list
_bl = True
if(self.is_not(_symbol)):
# if symbol include ~ operator
_symbol = _symbol[1:]
_bl = False
return _symbol, _bl
def is_true_PL(self, clause=set(), model={}):
_is_true = False
_is_not_symbol = False
_symbol = ''
_value = None
if model == {} : return None
for _literal in clause:
_value = None
_is_not_symbol = False
if(self.is_not(_literal)):
_is_not_symbol = True
_symbol = _literal[1:]
else:
_symbol = _literal
_value = model.get(_symbol) #always convert symbol in clause to positive form to compare with model.
if (_value == True and _is_not_symbol == False) or (_value == False and _is_not_symbol == True):
#if the value is true and original symbol does not include ~. (or the value is false and original symbol include ~)
_is_true = True
break
elif (_value == False and _is_not_symbol == False) or (_value == True and _is_not_symbol == True):
pass
else: #_value is None
_is_true = None
if _is_true:
return True
elif _is_true is None:
return None
else:
return False
def WalkSAT(self, sentence=[], p=PROBABILITY, max_flips=MAX_FLIPS):
_symbols = self.get_positive_symbols(sentence)
_model = {}
# Random assignment true or false to the symbol in symbol set
_model = {symbol: random.choice([True, False]) for symbol in _symbols}
for _i in range(max_flips):
_satisfied_clauses, _unsatisfied_clauses = [], []
for clause in sentence:
if self.is_true_PL(clause, _model):
_satisfied_clauses.append(clause)
else:
_unsatisfied_clauses.append(clause)
if _unsatisfied_clauses == []: # if there is no 'not satisfied' clause in sentence.
self.model = _model
return _model
clause = random.choice(_unsatisfied_clauses)
if random.random() < p:
_symbol, _v = self.get_random_symbol(clause)
else:
# Flip the symbol in clause that maximizes the number of satisfiable clauses
_symbol = self.get_max_satisfiable_symbol(clause, sentence, _model)
_model[_symbol] = not _model[_symbol]
# If no solution is found within the flip limit, will return None
if (datetime.now() - self.begin_time).total_seconds() >= RESOURCE_WALKSAT:
return None
if DEBUG: print('max_flips=%d'%(max_flips))
return None
def get_max_satisfiable_symbol(self, selected_clause, sentence, model):
# Flip the symbol in clause and get the maximizes number of satisfiable clauses
_max_symbol = ''
_max_count = 0
_symbols = self.get_positive_symbols(selected_clause)
for _symbol in _symbols:
_count = 0
for _clause in sentence:
if self.is_true_PL(_clause, self.flip_model(model, _symbol)):
_count += 1
if _max_count < _count:
_max_count = _count
_max_symbol = _symbol
return _max_symbol
def flip_model(self, model, symbol):
# Flip the symbol in given model
_model = dict(model)
_model[symbol] = not _model[symbol]
return _model
def PL_Resolution(self, KB = None, alpha = None):
_clauses = []
_clause_pairs = []
_is_satisfiable = False
# _is_only_negative_literal = True
if alpha is None and KB is not None:
_is_satisfiable = True
_clauses = KB.get_sentence()
else:
_clauses = KB.get_sentence().append({NOT+alpha}) #KB ^ ~alpha
_new = []
while True:
n = len(_clauses)
for i in range(n):
for j in range(i+1, n):
_clause_pairs.append((_clauses[i], _clauses[j]))
for (ci, cj) in _clause_pairs:
_resolvents = self.PL_Resolve(ci, cj)
if set() in _resolvents:
if DEBUG:print('_resolvents=:%s'%(_resolvents))
if _is_satisfiable:
if DEBUG: print('resolvent is empty set()')
return False
else:
if DEBUG: print('resolvent is empty set()')
return True
if _resolvents != []:
_new = self.add_set(_new, _resolvents)
# add resolvents into _new set.
if self.is_subset_in_list(_new, _clauses):
if _is_satisfiable:
if DEBUG: print('new is set of clauses')
return True
else:
if DEBUG: print('new is set of clauses')
return False
for _clause in _new:
if _clause not in _clauses:
_clauses.append(_clause)
_new = []
if DEBUG:print('PL_Resolution=>clauses:%s'%(_clauses))
def PL_Resolve(self, ci, cj):
#Return all clauses that can be obtained by resolving clauses ci and cj.
_clauses = []
for _symbol_i in ci:
for _symbol_j in cj:
if (_symbol_i == NOT+_symbol_j) or (_symbol_j == NOT+_symbol_i) :
_dnew = self.get_unique_set(self.remove_symbol(set(ci), _symbol_i), self.remove_symbol(set(cj), _symbol_j))
_clauses.append(_dnew)
return _clauses
def get_unique_set(self, clausei, clausej):
# Join clause i and j to form a new clause without redundant literal.
_unique_set = clausei
for _symbol in clausej:
_unique_set.add(_symbol)
return _unique_set
def add_set(self, set_list, sets):
# Add sets into list and avoid redundant set
_set_list = list(set_list)
for _set in sets:
_is_exist = False
for _existing_set in _set_list:
if _existing_set == _set:
_is_exist = True
if not _is_exist:
_set_list.append(_set)
return _set_list
def is_subset_in_list(self, subsets, set_list):
# if all set in subsets are included in set list, return True.
_is_subset = True
for _subset in subsets :
if not (_subset in set_list):
_is_subset = False
break
return _is_subset
class Prop_KB(object):
def __init__(self, clause=None):
self.agenda = []
self.sentence = []
if clause is not None:
self.tell(clause)
def tell(self, clause):
_is_known = False
if clause in self.sentence:
_is_known = True
else:
self.sentence.extend(clause)
return _is_known
def ask(self, qery):
_isTrue = False
return _isTrue
def get_sentence(self):
return self.sentence
if __name__ == "__main__":
'''
Main program.
Construct wedding class with input data.
Build CNF sentences and tell to Prop_KB.
Ask Prop_KB to provide a solution.
Prop_KB will check the KB is satisfiable then tell one solution.
'''
#program_name = sys.argv[0]
#input_file = sys.argv[1]
input_file = INPUT_FILE
actions = []
value = 0
i_guests, i_tables, restrictions = getInputData(input_file)
if DEBUG : print('guests=%d, tables=%d, restrictions=%s'%(i_guests, i_tables, restrictions))
w = Wedding(i_guests, i_tables, restrictions)
isSatisfy, arrangement = w.execution()
setOutputData(OUTPUT_FILE, isSatisfy, arrangement)