-
Notifications
You must be signed in to change notification settings - Fork 282
/
Copy pathsort_on_disk.hpp
801 lines (713 loc) · 32.9 KB
/
sort_on_disk.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
// Copyright 2018 Chia Network Inc
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SRC_CPP_SORT_ON_DISK_HPP_
#define SRC_CPP_SORT_ON_DISK_HPP_
#define BUF_SIZE 262144
#include <vector>
#include <iostream>
#include <fstream>
#include <string>
#include <algorithm>
#include "./util.hpp"
class SortOnDiskUtils {
public:
/*
* Given an array of bytes, extracts an unsigned 64 bit integer from the given
* index, to the given index.
*/
inline static uint64_t ExtractNum(uint8_t* bytes, uint32_t len_bytes, uint32_t begin_bits, uint32_t take_bits) {
uint32_t start_index = begin_bits / 8;
uint32_t end_index;
if ((begin_bits + take_bits) / 8 > len_bytes - 1) {
take_bits = (len_bytes) * 8 - begin_bits;
}
end_index = (begin_bits + take_bits) / 8;
assert(take_bits <= 64);
uint64_t sum = bytes[start_index] & ((1 << (8 - (begin_bits % 8))) - 1);
for (uint32_t i = start_index + 1; i <= end_index; i++) {
sum = (sum << 8);
if(i < len_bytes) // Fix to prevent overflow and maintain compatibility. Function may only return 57 bits in some cases
sum += bytes[i];
}
return sum >> (8 - ((begin_bits + take_bits) % 8));
}
/*
* Like memcmp, but only compares starting at a certain bit.
*/
inline static int MemCmpBits(uint8_t* left_arr, uint8_t* right_arr, uint32_t len, uint32_t bits_begin) {
uint32_t start_byte = bits_begin / 8;
uint8_t mask = ((1 << (8 - (bits_begin % 8))) - 1);
if ((left_arr[start_byte] & mask) != (right_arr[start_byte] & mask)) {
return (left_arr[start_byte] & mask) - (right_arr[start_byte] & mask);
}
for (uint32_t i = start_byte + 1; i < len; i++) {
if (left_arr[i] != right_arr[i])
return left_arr[i] - right_arr[i];
}
return 0;
}
// The number of memory entries required to do the custom SortInMemory algorithm, given the total number of entries to be sorted.
inline static uint64_t RoundSize(uint64_t size) {
size *= 2;
uint64_t result = 1;
while (result < size)
result *= 2;
return result + 50;
}
inline static bool IsPositionEmpty(uint8_t* memory, uint32_t entry_len) {
for (uint32_t i = 0; i < entry_len; i++)
if (memory[i] != 0)
return false;
return true;
}
};
class Disk {
public:
virtual void Read(uint64_t begin, uint8_t* memcache, uint64_t length) = 0;
virtual void Write(uint64_t begin, const uint8_t* memcache, uint64_t length) = 0;
};
class FileDisk : public Disk {
public:
inline explicit FileDisk(const std::string& filename) {
filename_ = filename;
// Opens the file for reading and writing
f_=fopen(filename.c_str(), "w+b");
if (f_==NULL) {
std::cout << "Failed to open" << std::endl;
throw std::string("File not opened correct");
}
}
~FileDisk() {
fclose(f_);
}
inline void Read(uint64_t begin, uint8_t* memcache, uint64_t length) override {
// Seek, read, and replace into memcache
if((!bReading)||(begin!=readPos)) {
fseek(f_,begin,SEEK_SET);
bReading=true;
}
fread(reinterpret_cast<char*>(memcache), sizeof(uint8_t), length, f_);
readPos=begin+length;
}
inline void Write(uint64_t begin, const uint8_t* memcache, uint64_t length) override {
// Seek and write from memcache
if((bReading)||(begin!=writePos)) {
fseek(f_,begin,SEEK_SET);
bReading=false;
}
fwrite(reinterpret_cast<const char*>(memcache), sizeof(uint8_t), length, f_);
writePos=begin+length;
}
inline std::string GetFileName() const noexcept {
return filename_;
}
private:
uint64_t readPos=0;
uint64_t writePos=0;
bool bReading=true;
std::string filename_;
FILE *f_;
};
// Store values bucketed by their leading bits into an array-like memcache.
// The memcache stores stacks of values, one for each bucket.
// The stacks are broken into segments, where each segment has content
// all from the same bucket, and a 4 bit pointer to its previous segment.
// The most recent segment is the head segment of that bucket.
// Additionally, empty segments form a linked list: 4 bit pointers of
// empty segments point to the next empty segment in the memcache.
// Each segment has size entries_per_seg * entry_len + 4, and consists of:
// [4 bit pointer to segment id] + [entries of length entry_len]*
class BucketStore {
public:
inline BucketStore(uint8_t* mem, uint64_t mem_len, uint32_t entry_len,
uint32_t bits_begin, uint32_t bucket_log, uint64_t entries_per_seg) {
mem_ = mem;
mem_len_ = mem_len;
entry_len_ = entry_len;
bits_begin_ = bits_begin;
bucket_log_ = bucket_log;
entries_per_seg_ = entries_per_seg;
for (uint64_t i = 0; i < (1UL << bucket_log); i++) {
bucket_sizes_.push_back(0);
}
seg_size_ = 4 + entry_len_ * entries_per_seg;
length_ = mem_len / seg_size_;
// Initially, all the segments are empty, store them as a linked list,
// where a segment points to the next empty segment.
for (uint64_t i = 0; i < length_; i++) {
SetSegmentId(i, i + 1);
}
// The head of the empty segments list.
first_empty_seg_id_ = 0;
// Initially, all bucket lists contain no segments in it.
for (uint64_t i = 0; i < bucket_sizes_.size(); i++) {
bucket_head_ids_.push_back(length_);
bucket_head_counts_.push_back(0);
}
}
inline void SetSegmentId(uint64_t i, uint64_t v) {
Util::IntToFourBytes(mem_ + i * seg_size_, v);
}
inline uint64_t GetSegmentId(uint64_t i) const {
return Util::FourBytesToInt(mem_ + i * seg_size_);
}
// Get the first empty position from the head segment of bucket b.
inline uint64_t GetEntryPos(uint64_t b) const {
return bucket_head_ids_[b] * seg_size_ + 4
+ bucket_head_counts_[b] * entry_len_;
}
inline void Audit() const {
uint64_t count = 0;
uint64_t pos = first_empty_seg_id_;
while (pos != length_) {
++count;
pos = GetSegmentId(pos);
}
for (uint64_t pos2 : bucket_head_ids_) {
while (pos2 != length_) {
++count;
pos2 = GetSegmentId(pos2);
}
}
assert(count == length_);
}
inline uint64_t NumFree() const {
uint64_t used = GetSegmentId(first_empty_seg_id_);
return (bucket_sizes_.size() - used) * entries_per_seg_;
}
inline bool IsEmpty() const noexcept {
for (uint64_t s : bucket_sizes_) {
if (s > 0) return false;
}
return true;
}
inline bool IsFull() const noexcept {
return first_empty_seg_id_ == length_;
}
inline void Store(uint8_t* new_val, uint64_t new_val_len) {
assert(new_val_len == entry_len_);
assert(first_empty_seg_id_ != length_);
uint64_t b = SortOnDiskUtils::ExtractNum(new_val, new_val_len, bits_begin_, bucket_log_);
bucket_sizes_[b] += 1;
// If bucket b contains no segments, or the head segment of bucket b is full, append a new segment.
if (bucket_head_ids_[b] == length_ ||
bucket_head_counts_[b] == entries_per_seg_) {
uint64_t old_seg_id = bucket_head_ids_[b];
// Set the head of the bucket b with the first empty segment (thus appending a new segment to the bucket b).
bucket_head_ids_[b] = first_empty_seg_id_;
// Move the first empty segment to the next empty one
// (which is linked with the first empty segment using id, since empty segments
// form a linked list).
first_empty_seg_id_ = GetSegmentId(first_empty_seg_id_);
// Link the head of bucket b to the previous head (in the linked list,
// the segment that will follow the new head will be the previous head).
SetSegmentId(bucket_head_ids_[b], old_seg_id);
bucket_head_counts_[b] = 0;
}
// Get the first empty position inside the head segment and write the entry there.
uint64_t pos = GetEntryPos(b);
memcpy(mem_ + pos, new_val, entry_len_);
bucket_head_counts_[b] += 1;
}
inline uint64_t MaxBucket() const {
uint64_t max_bucket_size = bucket_sizes_[0];
uint64_t max_index = 0;
for (uint64_t i = 1; i < bucket_sizes_.size(); i++) {
if (bucket_sizes_[i] > max_bucket_size) {
max_bucket_size = bucket_sizes_[i];
max_index = i;
}
}
return max_index;
}
inline std::vector<uint64_t> BucketsBySize() const {
// Lukasz Wiklendt (https://stackoverflow.com/questions/1577475/c-sorting-and-keeping-track-of-indexes)
std::vector<uint64_t> idx(bucket_sizes_.size());
iota(idx.begin(), idx.end(), 0);
sort(idx.begin(), idx.end(),
[this](uint64_t i1, uint64_t i2) {return bucket_sizes_[i1] > bucket_sizes_[i2];});
return idx;
}
// Similar to how 'Bits' class works, appends an entry to the entries list, such as all entries are stored into 64-bit blocks.
// Bits class was avoided since it consumes more time than a uint64_t array.
static void AddBucketEntry(uint8_t* big_endian_bytes, uint64_t num_bytes, uint16_t size_bits, uint64_t* entries, uint64_t& cnt) {
assert(size_bits / 8 >= num_bytes);
uint16_t extra_space = size_bits - num_bytes * 8;
uint64_t init_cnt = cnt;
uint16_t last_size = 0;
while (extra_space >= 64) {
extra_space -= 64;
entries[cnt++] = 0;
last_size = 64;
}
if (extra_space > 0) {
entries[cnt++] = 0;
last_size = extra_space;
}
for (uint64_t i = 0; i < num_bytes; i += 8) {
uint64_t val = 0;
uint8_t bucket_size = 0;
for (uint64_t j = i; j < i + 8 && j < num_bytes; j++) {
val = (val << 8) + big_endian_bytes[j];
bucket_size += 8;
}
if (cnt == init_cnt || last_size == 64) {
entries[cnt++] = val;
last_size = bucket_size;
} else {
uint8_t free_space = 64 - last_size;
if (free_space >= bucket_size) {
entries[cnt - 1] = (entries[cnt - 1] << bucket_size) + val;
last_size += bucket_size;
} else {
uint8_t suffix_size = bucket_size - free_space;
uint64_t mask = (static_cast<uint64_t>(1)) << suffix_size;
mask--;
uint64_t suffix = (val & mask);
uint64_t prefix = (val >> suffix_size);
entries[cnt - 1] = (entries[cnt - 1] << free_space) + prefix;
entries[cnt++] = suffix;
last_size = suffix_size;
}
}
}
}
// Extracts 'number_of_entries' from bucket b and empties memory of those from BucketStore.
inline uint64_t* BucketHandle(uint64_t b, uint64_t number_of_entries, uint64_t& final_size) {
uint32_t L = entry_len_;
uint32_t entry_size = L / 8;
if (L % 8)
++entry_size;
uint64_t cnt = 0;
uint64_t cnt_entries = 0;
// Entry bytes will be compressed into uint64_t array.
uint64_t* entries = new uint64_t[number_of_entries * entry_size];
// As long as we have a head segment in bucket b...
while (bucket_head_ids_[b] != length_) {
// ...extract the entries from it.
uint64_t start_pos = GetEntryPos(b) - L;
uint64_t end_pos = start_pos - bucket_head_counts_[b] * L;
for (uint64_t pos = start_pos; pos > end_pos + L; pos -=L) {
bucket_sizes_[b] -= 1;
bucket_head_counts_[b] -= 1;
AddBucketEntry(mem_ + pos, L, L*8, entries, cnt);
++cnt_entries;
if (cnt_entries == number_of_entries) {
final_size = cnt;
return entries;
}
}
// Move to the next segment from bucket b.
uint64_t next_full_seg_id = GetSegmentId(bucket_head_ids_[b]);
// The processed segment becomes now an empty segment.
SetSegmentId(bucket_head_ids_[b], first_empty_seg_id_);
first_empty_seg_id_ = bucket_head_ids_[b];
// Change the head of bucket b.
bucket_head_ids_[b] = next_full_seg_id;
if (next_full_seg_id == length_) {
bucket_head_counts_[b] = 0;
} else {
bucket_head_counts_[b] = entries_per_seg_;
}
if (start_pos != end_pos) {
bucket_sizes_[b] -= 1;
AddBucketEntry(mem_ + end_pos + L, L, L*8, entries, cnt);
++cnt_entries;
if (cnt_entries == number_of_entries) {
final_size = cnt;
return entries;
}
}
}
assert(bucket_sizes_[b] == 0);
final_size = cnt;
return entries;
}
private:
uint8_t* mem_;
uint64_t mem_len_;
uint32_t bits_begin_;
uint32_t entry_len_;
uint32_t bucket_log_;
uint64_t entries_per_seg_;
std::vector<uint64_t> bucket_sizes_;
uint64_t seg_size_;
uint64_t length_;
uint64_t first_empty_seg_id_;
std::vector<uint64_t> bucket_head_ids_;
std::vector<uint64_t> bucket_head_counts_;
};
class Sorting {
public:
static void EntryToBytes(uint64_t* entries, uint32_t start_pos, uint32_t end_pos, uint8_t last_size, uint8_t buffer[]) {
uint8_t shift = Util::ByteAlign(last_size) - last_size;
uint64_t val = entries[end_pos - 1] << (shift);
uint16_t cnt = 0;
uint8_t iterations = last_size / 8;
if (last_size % 8)
iterations++;
for (uint8_t i = 0; i < iterations; i++) {
buffer[cnt++] = (val & 0xff);
val >>= 8;
}
if (end_pos - start_pos >= 2) {
for (int32_t i = end_pos - 2; i >= (int32_t) start_pos; i--) {
uint64_t val = entries[i];
for (uint8_t j = 0; j < 8; j++) {
buffer[cnt++] = (val & 0xff);
val >>= 8;
}
}
}
uint32_t left = 0, right = cnt - 1;
while (left <= right) {
std::swap(buffer[left], buffer[right]);
left++;
right--;
}
}
inline static void SortOnDisk(Disk& disk, uint64_t disk_begin, uint64_t spare_begin,
uint32_t entry_len, uint32_t bits_begin, std::vector<uint64_t> bucket_sizes,
uint8_t* mem, uint64_t mem_len, int quicksort = 0) {
uint64_t length = mem_len / entry_len;
uint64_t total_size = 0;
// bucket_sizes[i] represent how many entries start with the prefix i (from 0000 to 1111).
// i.e. bucket_sizes[10] represents how many entries start with the prefix 1010.
for (auto& n : bucket_sizes) total_size += n;
uint64_t N_buckets = bucket_sizes.size();
assert(disk_begin + total_size * entry_len <= spare_begin);
if (bits_begin >= entry_len * 8) {
return;
}
// If we have enough memory to sort the entries, do it.
// How much an entry occupies in memory, without the common prefix, in SortInMemory algorithm.
uint32_t entry_len_memory = entry_len - bits_begin / 8;
// Are we in Compress phrase 1 (quicksort=1) or is it the last bucket (quicksort=2)? Perform quicksort if it
// fits in the memory (SortInMemory algorithm won't always perform well).
if (quicksort > 0 && total_size <= length) {
disk.Read(disk_begin, mem, total_size * entry_len);
QuickSort(mem, entry_len, total_size, bits_begin);
disk.Write(disk_begin, mem, total_size * entry_len);
return ;
}
// Do SortInMemory algorithm if it fits in the memory
// (number of entries required * entry_len_memory) <= total memory available
if (quicksort == 0 && SortOnDiskUtils::RoundSize(total_size) * entry_len_memory <= mem_len) {
SortInMemory(disk, disk_begin, mem, entry_len, total_size, bits_begin);
return;
}
std::vector<uint64_t> bucket_begins;
bucket_begins.push_back(0);
uint64_t total = 0;
// The beginning of each bucket. The first entry from bucket i will always be written on disk on position
// disk_begin + bucket_begins[i] * entry_len, the second one will be written on position
// disk_begin + (bucket_begins[i] + 1) * entry_len and so on. This way, when all entries are written back
// to disk, they will be sorted by the first 4 bits (the bucket) at the end.
for (uint64_t i = 0; i < N_buckets - 1; i++) {
total += bucket_sizes[i];
bucket_begins.push_back(total);
}
uint32_t bucket_log = Util::GetSizeBits(N_buckets) - 1;
// Move the beginning of each bucket into the spare.
uint64_t spare_written = 0;
std::vector<uint64_t> consumed_per_bucket(N_buckets, 0);
// The spare stores about 5 * N_buckets * len(mem) entries.
uint64_t unit = length / N_buckets * 5;
for (uint32_t i = 0; i < bucket_sizes.size(); i++) {
uint64_t b_size = bucket_sizes[i];
uint64_t to_consume = std::min(unit, b_size);
while (to_consume > 0) {
uint64_t next_amount = std::min(length, to_consume);
disk.Read(disk_begin + (bucket_begins[i] + consumed_per_bucket[i]) * entry_len,
mem, next_amount * entry_len);
disk.Write(spare_begin + spare_written * entry_len,
mem, next_amount * entry_len);
to_consume -= next_amount;
spare_written += next_amount;
consumed_per_bucket[i] += next_amount;
}
}
uint64_t spare_consumed = 0;
BucketStore bstore = BucketStore(mem, mem_len, entry_len, bits_begin, bucket_log, 100);
uint64_t read_pos=spare_begin;
uint8_t* buf = new uint8_t[entry_len];
// Populate BucketStore from spare.
while (!bstore.IsFull() && spare_consumed < spare_written) {
disk.Read(read_pos, buf, entry_len);
read_pos+=entry_len;
bstore.Store(buf, entry_len);
spare_consumed += 1;
}
// subbuckets[i][j] represents how many entries starting with prefix i has the next prefix equal to j.
// When we'll call recursively for all entries starting with the prefix i, bucket_sizes[] becomes
// subbucket_sizes[i].
std::vector<uint64_t> written_per_bucket(N_buckets, 0);
std::vector<std::vector<uint64_t> > subbucket_sizes;
for (uint64_t i = 0; i < N_buckets; i++) {
std::vector<uint64_t> col(N_buckets, 0);
subbucket_sizes.push_back(col);
}
while (!bstore.IsEmpty()) {
// Write from BucketStore the heaviest buckets first (so it empties faster)
for (uint64_t b : bstore.BucketsBySize()) {
if (written_per_bucket[b] >= consumed_per_bucket[b]) {
continue;
}
// Write the content of the bucket in the right spot (beginning of the bucket + number of entries already written
// in that bucket).
uint64_t write_pos=disk_begin + (bucket_begins[b] + written_per_bucket[b]) * entry_len;
uint64_t size;
// Don't extract from the bucket more entries than the difference between read and written entries (this avoids
// overwritting entries that were not read yet).
uint64_t* bucket_handle = bstore.BucketHandle(b, consumed_per_bucket[b] - written_per_bucket[b], size);
uint32_t entry_size = entry_len / 8;
uint8_t last_size = (entry_len * 8) % 64;
if (last_size == 0)
last_size = 64;
if (entry_len % 8)
++entry_size;
for (uint64_t i = 0; i < size; i += entry_size) {
EntryToBytes(bucket_handle, i, i + entry_size, last_size, buf);
disk.Write(write_pos, buf, entry_len);
write_pos+=entry_len;
written_per_bucket[b] += 1;
subbucket_sizes[b][SortOnDiskUtils::ExtractNum(buf, entry_len, bits_begin +
bucket_log, bucket_log)] += 1;
}
delete[] bucket_handle;
}
// Advance the read handle into buckets and move read entries to BucketStore. We read first from buckets
// with the smallest difference between read and write handles. The goal is to increase the smaller differences.
// The bigger the difference is, the better, as in the next step, we'll be able to extract more from the BucketStore.
std::vector<uint64_t> idx(bucket_sizes.size());
iota(idx.begin(), idx.end(), 0);
sort(idx.begin(), idx.end(),
[&consumed_per_bucket, &written_per_bucket](uint64_t i1, uint64_t i2) {
return (consumed_per_bucket[i1] - written_per_bucket[i1] <
consumed_per_bucket[i2] - written_per_bucket[i2]);
});
bool broke = false;
for (uint64_t i : idx) {
if (consumed_per_bucket[i] == bucket_sizes[i]) {
continue;
}
uint64_t read_pos=disk_begin + (bucket_begins[i] + consumed_per_bucket[i]) * entry_len;
while (!bstore.IsFull() && consumed_per_bucket[i] < bucket_sizes[i]) {
disk.Read(read_pos, buf, entry_len);
read_pos+=entry_len;
bstore.Store(buf, entry_len);
consumed_per_bucket[i] += 1;
}
if (bstore.IsFull()) {
broke = true;
break;
}
}
// If BucketStore still isn't full and we've read all entries from buckets, start populating from the spare space.
if (!broke) {
uint64_t read_pos=spare_begin + spare_consumed * entry_len;
while (!bstore.IsFull() && spare_consumed < spare_written) {
disk.Read(read_pos, buf, entry_len);
read_pos+=entry_len;
bstore.Store(buf, entry_len);
spare_consumed += 1;
}
}
}
delete[] buf;
// The last bucket that contains at least one entry.
uint8_t last_bucket = N_buckets - 1;
while (last_bucket > 0) {
bool all_zero = true;
for (uint64_t i = 0; i < N_buckets; i++)
if (subbucket_sizes[last_bucket][i] != 0)
all_zero = false;
if (!all_zero)
break;
last_bucket--;
}
for (uint32_t i = 0; i < bucket_sizes.size(); i++) {
// Do we have to do quicksort for the new partition?
int new_quicksort;
// If quicksort = 1, means all partitions must do the quicksort as their final step.
// Preserve that for the new call.
if (quicksort == 1) {
new_quicksort = 1;
} else {
// If this is not the last bucket, we use the SortInMemoryAlgorithm
if (i != last_bucket) {
new_quicksort = 0;
} else {
// ..otherwise, do quicksort, as the last bucket isn't guaranteed to have uniform distribution.
new_quicksort = 2;
}
}
// At this point, all entries are sorted in increasing order by their buckets (4 bits prefixes).
// We recursively sort each chunk, this time starting with the next 4 bits to determine the buckets.
// (i.e. firstly, we sort entries starting with 0000, then entries starting with 0001, ..., then entries
// starting with 1111, at the end producing the correct ordering).
SortOnDisk(disk, disk_begin + bucket_begins[i] * entry_len, spare_begin,
entry_len, bits_begin + bucket_log, subbucket_sizes[i], mem, mem_len, new_quicksort);
}
}
inline static void SortInMemory(Disk& disk, uint64_t disk_begin, uint8_t* memory, uint32_t entry_len,
uint64_t num_entries, uint32_t bits_begin) {
uint32_t entry_len_memory = entry_len - bits_begin / 8;
uint64_t memory_len = SortOnDiskUtils::RoundSize(num_entries) * entry_len_memory;
uint8_t* swap_space = new uint8_t[entry_len];
uint8_t* buffer = new uint8_t[BUF_SIZE];
uint8_t* common_prefix = new uint8_t[bits_begin / 8];
uint64_t bucket_length = 0;
bool set_prefix = false;
// The number of buckets needed (the smallest power of 2 greater than 2 * num_entries).
while ((1ULL << bucket_length) < 2 * num_entries)
bucket_length++;
memset(memory, 0, sizeof(memory[0])*memory_len);
uint64_t read_pos=disk_begin;
uint64_t buf_size = 0;
uint64_t buf_ptr = 0;
uint64_t swaps = 0;
for (uint64_t i = 0; i < num_entries; i++) {
if (buf_size == 0) {
// If read buffer is empty, read from disk and refill it.
buf_size = std::min((uint64_t) BUF_SIZE / entry_len, num_entries - i);
buf_ptr = 0;
disk.Read(read_pos, buffer, buf_size * entry_len);
read_pos+=buf_size * entry_len;
if (set_prefix == false) {
// We don't store the common prefix of all entries in memory, instead just append it every time
// in write buffer.
memcpy(common_prefix, buffer, bits_begin / 8);
set_prefix = true;
}
}
buf_size--;
// First unique bits in the entry give the expected position of it in the sorted array.
// We take 'bucket_length' bits starting with the first unique one.
uint64_t pos = SortOnDiskUtils::ExtractNum(buffer + buf_ptr, entry_len, bits_begin, bucket_length) * entry_len_memory;
// As long as position is occupied by a previous entry...
while (SortOnDiskUtils::IsPositionEmpty(memory + pos, entry_len_memory) == false && pos < memory_len) {
// ...store there the minimum between the two and continue to push the higher one.
if (SortOnDiskUtils::MemCmpBits(memory + pos, buffer + buf_ptr + bits_begin / 8, entry_len_memory, 0) > 0) {
// We always store the entry without the common prefix.
memcpy(swap_space, memory + pos, entry_len_memory);
memcpy(memory + pos, buffer + buf_ptr + bits_begin / 8, entry_len_memory);
memcpy(buffer + buf_ptr + bits_begin / 8, swap_space, entry_len_memory);
swaps++;
}
pos += entry_len_memory;
}
// Push the entry in the first free spot.
memcpy(memory + pos, buffer + buf_ptr + bits_begin / 8, entry_len_memory);
buf_ptr += entry_len;
}
uint64_t entries_written = 0;
buf_size = 0;
memset(buffer, 0, BUF_SIZE);
uint64_t write_pos=disk_begin;
// Search the memory buffer for occupied entries.
for (uint64_t pos = 0; entries_written < num_entries && pos < memory_len; pos += entry_len_memory) {
if (SortOnDiskUtils::IsPositionEmpty(memory + pos, entry_len_memory) == false) {
// We've fount an entry.
if (buf_size + entry_len >= BUF_SIZE) {
// Write buffer is full, write it and clean it.
disk.Write(write_pos, buffer, buf_size);
write_pos+=buf_size;
entries_written += buf_size / entry_len;
buf_size = 0;
}
// Write first the common prefix of all entries.
memcpy(buffer + buf_size, common_prefix, bits_begin / 8);
// Then the stored entry itself.
memcpy(buffer + buf_size + bits_begin / 8, memory + pos, entry_len_memory);
buf_size += entry_len;
}
}
// We still have some entries left in the write buffer, write them as well.
if (buf_size > 0) {
disk.Write(write_pos, buffer, buf_size);
write_pos+=buf_size;
entries_written += buf_size / entry_len;
}
assert(entries_written == num_entries);
delete[] swap_space;
delete[] buffer;
delete[] common_prefix;
}
inline static void QuickSort(uint8_t* memory, uint32_t entry_len,
uint64_t num_entries, uint32_t bits_begin) {
uint64_t memory_len = (uint64_t)entry_len * num_entries;
uint8_t * pivot_space = new uint8_t[entry_len];
QuickSortInner(memory, memory_len, entry_len, bits_begin, 0, num_entries, pivot_space);
delete[] pivot_space;
}
inline static void CheckSortOnDisk(Disk& disk, uint64_t disk_begin, uint64_t spare_begin,
uint32_t entry_len, uint32_t bits_begin, std::vector<uint64_t> bucket_sizes,
uint8_t* mem, uint64_t mem_len, bool quicksort = false) {
uint64_t length = mem_len / entry_len;
uint64_t total_size = 0;
for (auto& n : bucket_sizes) total_size += n;
cout << "CheckSortOnDisk entry_len: " << entry_len << " length: " << length << " total size: " << total_size << endl;
disk.Read(disk_begin, mem, 20 * entry_len);
for(uint64_t i=0;i<20;i++) {
cout << i << ": " << Util::HexStr(mem + i * entry_len, entry_len) << endl;
}
}
private:
inline static void QuickSortInner(uint8_t* memory, uint64_t memory_len,
uint32_t L, uint32_t bits_begin,
uint64_t begin, uint64_t end, uint8_t* pivot_space) {
if (end - begin <= 5) {
for (uint64_t i = begin + 1; i < end; i++) {
uint64_t j = i;
memcpy(pivot_space, memory + i * L, L);
while (j > begin && SortOnDiskUtils::MemCmpBits(memory + (j - 1) * L, pivot_space, L, bits_begin) > 0) {
memcpy(memory + j * L, memory + (j - 1) * L, L);
j--;
}
memcpy(memory + j * L, pivot_space, L);
}
return ;
}
uint64_t lo = begin;
uint64_t hi = end - 1;
memcpy(pivot_space, memory + (hi * L), L);
bool left_side = true;
while (lo < hi) {
if (left_side) {
if (SortOnDiskUtils::MemCmpBits(memory + lo * L, pivot_space, L, bits_begin) < 0) {
++lo;
} else {
memcpy(memory + hi * L, memory + lo * L, L);
--hi;
left_side = false;
}
} else {
if (SortOnDiskUtils::MemCmpBits(memory + hi * L, pivot_space, L, bits_begin) > 0) {
--hi;
} else {
memcpy(memory + lo * L, memory + hi * L, L);
++lo;
left_side = true;
}
}
}
memcpy(memory + lo * L, pivot_space, L);
if (lo - begin <= end - lo) {
QuickSortInner(memory, memory_len, L, bits_begin, begin, lo, pivot_space);
QuickSortInner(memory, memory_len, L, bits_begin, lo + 1, end, pivot_space);
} else {
QuickSortInner(memory, memory_len, L, bits_begin, lo + 1, end, pivot_space);
QuickSortInner(memory, memory_len, L, bits_begin, begin, lo, pivot_space);
}
}
};
#endif // SRC_CPP_SORT_ON_DISK_HPP_