-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSDP_dtaExplore.py
135 lines (133 loc) · 5.32 KB
/
SDP_dtaExplore.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#!/usr/bin/python
# -*- coding: utf-8 -*-
import sys
from os import path
import pandas as pd
from glob import glob
from joblib import dump
from datetime import datetime
import MoNeT_MGDrivE as monet
import SDP_aux as aux
import SDP_gene as drv
import SDP_land as lnd
if monet.isNotebook():
(USR, DRV, AOI, QNT, THS, TRC) = (
'zelda', 'PGS', 'HLT', '50', '0.1', 'HLT'
)
else:
(USR, DRV, AOI, QNT, THS, TRC) = sys.argv[1:]
# Setup number of threads -----------------------------------------------------
JOB = aux.JOB_DSK
if USR == 'srv':
JOB = aux.JOB_SRV
CHUNKS = JOB
###########################################################################
# Paths
###########################################################################
(drive, land) = (
drv.driveSelector(DRV, AOI, popSize=aux.POP_SIZE), lnd.landSelector()
)
(gene, fldr) = (drive.get('gDict'), drive.get('folder'))
###############################################################################
# Iterate through experiments
###############################################################################
EXPS = aux.EXPS
exp = EXPS[0]
for exp in EXPS:
###########################################################################
# Setting up paths
###########################################################################
(PT_ROT, PT_IMG, PT_DTA, PT_PRE, PT_OUT, PT_MTR) = aux.selectPath(
USR, fldr, exp
)
PT_OUT = path.join(PT_ROT, 'ML')
PT_IMG = path.join(PT_OUT, 'img')
[monet.makeFolder(i) for i in [PT_OUT, PT_IMG]]
PT_SUMS = path.join(PT_ROT, 'SUMMARY')
# Time and head -----------------------------------------------------------
tS = datetime.now()
monet.printExperimentHead(
PT_ROT, PT_SUMS, tS,
'{} DtaExplore [{}:{}:{}:{}]'.format('PGG', DRV, QNT, AOI, THS)
)
###############################################################################
# Read CSV
###############################################################################
thsStr = str(int(float(THS)*100))
(fName_I, fName_R) = (
'SCA_{}_{}Q_{}T.csv'.format(AOI, QNT, thsStr),
'REG_{}_{}Q_{}T.csv'.format(AOI, QNT, thsStr)
)
(DATA, DATA_FILE) = (
pd.read_csv(path.join(PT_OUT, fName_I)),
pd.read_csv(path.join(PT_OUT, fName_R))
)
# Features and labels ---------------------------------------------------------
COLS = list(DATA.columns)
(FEATS, LABLS) = (
[i for i in COLS if i[0]=='i'], [i for i in COLS if i[0]!='i']
)
###############################################################################
# Filter Output with Constraints
###############################################################################
(renRge, resRge) = ((0, 52), (0, 100000000000))
wopRge = (-10*365, 15*365)
fltr = (
renRge[0] <= DATA['i_ren'], DATA['i_ren'] <= renRge[1],
resRge[0] <= DATA['i_res'], DATA['i_res'] <= resRge[1]
)
constrained = DATA[list(map(all, zip(*fltr)))]
constrainedFiles = DATA_FILE[list(map(all, zip(*fltr)))]
###############################################################################
# Export
###############################################################################
print('{}* Found {}/{} matches (Check filter if needed!){}'.format(
monet.CBBL, constrained.shape[0], DATA.shape[0], monet.CEND
))
constrained.to_csv(path.join(PT_OUT, 'DTA_FLTR.csv'), index=False)
constrainedFiles.to_csv(path.join(PT_OUT, 'DTA_FLTR_Files.csv'), index=False)
###############################################################################
# Transform Entries
###############################################################################
(SCA, PAD) = (aux.DATA_SCA, aux.DATA_PAD)
catSorting = [i for i in list(DATA.columns) if i[0]=='i']
outSorting = [i for i in list(DATA.columns) if i[0]!='i']
zipper = {i: (int(SCA[i]), PAD[i]) for i in catSorting}
# print(outSorting)
# Transform to fnames ---------------------------------------------------------
expsNum = constrained.shape[0]
(expsIter, skipped, counter) = ([[], []], 0, 0)
ix = 1
skipped = 0
for ix in range(expsNum):
print(
'{}* Processing: {}/{}{}'.format(monet.CBBL, ix+1, expsNum, monet.CEND),
end='\r'
)
# row = constrained.iloc[ix]
row = constrainedFiles.iloc[ix]
i=0
ins = [str(int(row[i])).zfill(zipper[i][1]) for i in zipper]
fname = aux.XP_PTRN.format(*ins[:-1], TRC, ins[-1], 'srp', 'bz')
prePath = PT_PRE.split('/')
fpath = path.join('/'.join(prePath), fname)
fpath.split('/')[-1]
if path.isfile(fpath):
(tti, tto, wop, poe, _, cpt, mnf) = [row[i] for i in outSorting]
expsIter.append([
counter, fpath,
tti, tto, wop, mnf, 0, poe, cpt
])
counter = counter + 1
else:
print(fname)
skipped = skipped + 1
print(
'{}* Skipped (no PRE): {}/{}{}'.format(
monet.CBBL, skipped, expsNum, monet.CEND
)
)
###############################################################################
# Export iter
###############################################################################
dump(expsIter, path.join(PT_OUT, 'DTA_PST_{}.job'.format(AOI)))