forked from NVlabs/VILA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_vqa_qbench.py
executable file
·120 lines (94 loc) · 4.69 KB
/
model_vqa_qbench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# This file is modified from https://github.com/haotian-liu/LLaVA/
import argparse
import torch
from tqdm import tqdm
import json
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
from PIL import Image
import requests
from PIL import Image
from io import BytesIO
def load_image(image_file):
if image_file.startswith('http') or image_file.startswith('https'):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_file).convert('RGB')
return image
def eval_model(args):
# Model
disable_torch_init()
model_name = get_model_name_from_path(args.model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, model_name, args.model_base, True)
with open(args.questions_file) as f:
llvqa_data = json.load(f)
for i, llddata in enumerate(tqdm(llvqa_data)):
filename = llddata["img_path"]
if args.lang == "en":
message = llddata["question"] + "\nChoose between one of the options as follows:\n"
elif args.lang == "zh":
message = llddata["question"] + "\在下列选项中选择一个:\n"
else:
raise NotImplementedError("Q-Bench does not support languages other than English (en) and Chinese (zh) yet. Contact us (https://github.com/VQAssessment/Q-Bench/) to convert Q-Bench into more languages.")
for choice, ans in zip(["A.", "B.", "C.", "D."], llddata["candidates"]):
message += f"{choice} {ans}\n"
qs = message
if model.config.mm_use_im_start_end:
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
else:
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
if 'llama-2' in model_name.lower():
conv_mode = "llava_llama_2"
elif "v1" in model_name.lower():
conv_mode = "llava_v1"
elif "mpt" in model_name.lower():
conv_mode = "mpt"
else:
conv_mode = "llava_v0"
if args.conv_mode is not None and conv_mode != args.conv_mode:
print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode))
else:
args.conv_mode = conv_mode
conv = conv_templates[args.conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
image = load_image(args.image_folder + filename)
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].half().cuda()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor,
num_beams=1,
do_sample=False,
temperature=0,
max_new_tokens=1024,
use_cache=True,
stopping_criteria=[stopping_criteria])
outputs = outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
outputs = outputs.strip()
if outputs.endswith(stop_str):
outputs = outputs[:-len(stop_str)]
outputs = outputs.strip()
llddata["response"] = outputs
with open(args.answers_file, "a") as wf:
json.dump(llddata, wf)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="llava-v1.5")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--image-folder", type=str, default="./playground/data/qbench/images_llvisionqa")
parser.add_argument("--questions-file", type=str, default="./playground/data/qbench/llvisionqa_dev.json")
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
parser.add_argument("--conv-mode", type=str, default="llava_v1")
parser.add_argument("--lang", type=str, default="en")
args = parser.parse_args()
eval_model(args)