forked from google-research/l2p
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvit.py
703 lines (624 loc) · 24.3 KB
/
vit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
# coding=utf-8
# Copyright 2020 The Learning-to-Prompt Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific Learning-to-Prompt governing permissions and
# limitations under the License.
# ==============================================================================
"""Implementation of Vision Transformer in JAX."""
import functools
from typing import Any, Callable, Optional, Tuple
import flax.linen as nn
import jax.numpy as jnp
import ml_collections
from models import prefix_attention
from models import prompt
Array = Any
PRNGKey = Any
Shape = Tuple[int]
Dtype = Any
class IdentityLayer(nn.Module):
"""Identity layer, convenient for giving a name to an array."""
@nn.compact
def __call__(self, x):
return x
class AddPositionEmbs(nn.Module):
"""Adds (optionally learned) positional embeddings to the inputs.
Attributes:
posemb_init: positional embedding initializer.
"""
posemb_init: Callable[[PRNGKey, Shape, Dtype], Array]
@nn.compact
def __call__(self, inputs):
"""Applies AddPositionEmbs module.
By default this layer uses a fixed sinusoidal embedding table. If a
learned position embedding is desired, pass an initializer to
posemb_init.
Args:
inputs: Inputs to the layer.
Returns:
Output tensor with shape `(bs, timesteps, in_dim)`.
"""
# inputs.shape is (batch_size, seq_len, emb_dim).
assert inputs.ndim == 3, ('Number of dimensions should be 3,'
' but it is: %d' % inputs.ndim)
pos_emb_shape = (1, inputs.shape[1], inputs.shape[2])
pe = self.param('pos_embedding', self.posemb_init, pos_emb_shape)
return inputs + pe
class MlpBlock(nn.Module):
"""Transformer MLP / feed-forward block."""
mlp_dim: int
dtype: Dtype = jnp.float32
out_dim: Optional[int] = None
dropout_rate: float = 0.1
kernel_init: Callable[[PRNGKey, Shape, Dtype],
Array] = nn.initializers.xavier_uniform()
bias_init: Callable[[PRNGKey, Shape, Dtype],
Array] = nn.initializers.normal(stddev=1e-6)
@nn.compact
def __call__(self, inputs, *, deterministic):
"""Applies Transformer MlpBlock module."""
actual_out_dim = inputs.shape[-1] if self.out_dim is None else self.out_dim
x = nn.Dense(
features=self.mlp_dim,
dtype=self.dtype,
kernel_init=self.kernel_init,
bias_init=self.bias_init)( # pytype: disable=wrong-arg-types
inputs)
x = nn.gelu(x)
x = nn.Dropout(rate=self.dropout_rate)(x, deterministic=deterministic)
output = nn.Dense(
features=actual_out_dim,
dtype=self.dtype,
kernel_init=self.kernel_init,
bias_init=self.bias_init)( # pytype: disable=wrong-arg-types
x)
output = nn.Dropout(rate=self.dropout_rate)(
output, deterministic=deterministic)
return output
class Encoder1DBlock(nn.Module):
"""Transformer encoder layer.
Attributes:
inputs: input data.
mlp_dim: dimension of the mlp on top of attention block.
dtype: the dtype of the computation (default: float32).
dropout_rate: dropout rate.
attention_dropout_rate: dropout for attention heads.
deterministic: bool, deterministic or not (to apply dropout).
num_heads: Number of heads in nn.MultiHeadDotProductAttention
"""
mlp_dim: int
num_heads: int
dtype: Dtype = jnp.float32
dropout_rate: float = 0.1
attention_dropout_rate: float = 0.1
prefix_layer: Any = None
@nn.compact
def __call__(self, inputs, *, deterministic):
"""Applies Encoder1DBlock module.
Args:
inputs: Inputs to the layer.
deterministic: Dropout will not be applied when set to true.
Returns:
output after transformer encoder block.
"""
# Attention block.
assert inputs.ndim == 3, f'Expected (batch, seq, hidden) got {inputs.shape}'
x = nn.LayerNorm(dtype=self.dtype)(inputs)
x = prefix_attention.MultiHeadDotProductAttention(
dtype=self.dtype,
kernel_init=nn.initializers.xavier_uniform(),
broadcast_dropout=False,
deterministic=deterministic,
dropout_rate=self.attention_dropout_rate,
num_heads=self.num_heads,
prefix=self.prefix_layer)(x, x)
x = nn.Dropout(rate=self.dropout_rate)(x, deterministic=deterministic)
x = x + inputs
# MLP block.
y = nn.LayerNorm(dtype=self.dtype)(x)
y = MlpBlock(
mlp_dim=self.mlp_dim, dtype=self.dtype, dropout_rate=self.dropout_rate)(
y, deterministic=deterministic)
return x + y
class Encoder(nn.Module):
"""Transformer Model Encoder for sequence to sequence translation.
Attributes:
num_layers: number of layers
mlp_dim: dimension of the mlp on top of attention block
num_heads: Number of heads in nn.MultiHeadDotProductAttention
dropout_rate: dropout rate.
attention_dropout_rate: dropout rate in self attention.
"""
num_layers: int
mlp_dim: int
num_heads: int
prefix: Any
g_prompt_layer_idx: Any
prompt: Any
e_prompt_layer_idx: Any
use_prefix_tune_for_e_prompt: bool = True
use_prefix_tune_for_g_prompt: bool = True
dropout_rate: float = 0.1
attention_dropout_rate: float = 0.1
@nn.compact
def __call__(self, inputs, *, train):
"""Applies Transformer model on the inputs.
Args:
inputs: Inputs to the layer.
train: Set to `True` when training.
Returns:
output of a transformer encoder.
"""
assert inputs.ndim == 3 # (batch, len, emb)
x = AddPositionEmbs(
posemb_init=nn.initializers.normal(stddev=0.02), # from BERT.
name='posembed_input')(
inputs)
x = nn.Dropout(rate=self.dropout_rate)(x, deterministic=not train)
# Input Encoder
# counter for prompts
prompt_counter = -1
prefix_layer = None
batched_prompt = None
for lyr in range(self.num_layers):
prefix_layer = None
batched_prompt = None
if (self.prefix is not None) and (lyr in self.g_prompt_layer_idx):
if not self.use_prefix_tune_for_g_prompt:
batched_prompt = self.prefix[lyr] # len * hiddensize
batched_prompt = prompt.expand_to_batch(
batched_prompt, batch_size=x.shape[0])
else:
prefix_layer = self.prefix[lyr]
# batch it here
prefix_layer = prompt.expand_to_batch(
prefix_layer, batch_size=x.shape[0], axis=1)
else:
prefix_layer = None
if self.prompt is not None:
if isinstance(self.e_prompt_layer_idx, int):
self.e_prompt_layer_idx = [self.e_prompt_layer_idx]
if lyr in self.e_prompt_layer_idx:
prompt_counter += 1
if self.use_prefix_tune_for_e_prompt:
if prefix_layer is not None:
# concatenate shared prompt/prefix with this prefix
prefix_layer = jnp.concatenate(
[prefix_layer, self.prompt[prompt_counter]], axis=-3)
else:
prefix_layer = self.prompt[prompt_counter]
else:
# do the concatenation here
if batched_prompt is not None:
batched_prompt = jnp.concatenate(
[batched_prompt, self.prompt[prompt_counter]], axis=-2)
x = prompt.prepend_prompt(batched_prompt, x)
else:
batched_prompt = self.prompt[prompt_counter]
x = prompt.prepend_prompt(batched_prompt, x)
x = Encoder1DBlock(
mlp_dim=self.mlp_dim,
dropout_rate=self.dropout_rate,
attention_dropout_rate=self.attention_dropout_rate,
name=f'encoderblock_{lyr}',
num_heads=self.num_heads,
prefix_layer=prefix_layer)(
x, deterministic=not train)
encoded = nn.LayerNorm(name='encoder_norm')(x)
return encoded
class VisionTransformer(nn.Module):
"""VisionTransformer with prompts.
Attributes:
num_classes: number of total classes.
patches: A ConfigDict containing patch size.
transformer: A ConfigDict containing transformer parameters.
hidden_size: Size of the input embedding feature.
train: If in training mode or not.
norm_pre_logits: If normalizing pre-logits or not.
temperature: Temparature parameter of cosine normalization.
representation_size: Representation size of the penaltimate layer. Default
to be None (so we don't have this extra layer).
classifier: Use which part of the output feature to do classification.
Choose from 'token', 'gap', 'prompt', 'token+prompt'.
use_cls_token: If use class token or not.
prompt_params: Dictionary containing prompt parameters
reweight_prompt: If add a reweighting layer after prompts. Default to be
None and deprecated for now.
num_tasks: Number of tasks in continual learning.
"""
num_classes: int
patches: ml_collections.ConfigDict
transformer: ml_collections.ConfigDict
hidden_size: int
train: bool = False
norm_pre_logits: bool = False
temperature: float = 1.0
representation_size: Optional[int] = None
classifier: str = 'token'
use_cls_token: bool = True
prompt_params: Any = None
reweight_prompt: bool = False
num_tasks: int = -1
prefix_params: Any = None
prompt_contrastive_temp: float = -1.0
num_classes_per_task: int = -1
@nn.compact
def __call__(self,
inputs,
prompt_mask=None,
task_id=-1,
cls_features=None,
label=None):
res_vit = dict()
x = inputs
n, h, w, c = x.shape
# We can merge s2d+emb into a single conv; it's the same.
x = nn.Conv(
features=self.hidden_size,
kernel_size=self.patches.size,
strides=self.patches.size,
padding='VALID',
name='embedding')(
x)
# 12.12: init prefix
use_prefix_tune_for_g_prompt = True
if self.prefix_params:
n_layers = self.transformer.num_layers
n_heads = self.transformer.num_heads
# prefix_len,
g_prompt_length = self.prefix_params['g_prompt_length']
g_prompt_layer_idx = self.prefix_params['g_prompt_layer_idx']
embedding_size = self.hidden_size // n_heads
if not self.prefix_params['use_prefix_tune_for_g_prompt']:
use_prefix_tune_for_g_prompt = False
prefix = self.param('prefix', nn.initializers.uniform(),
(n_layers, g_prompt_length, self.hidden_size))
else:
# 1.4: added for the same key and value
if self.prefix_params['same_key_value']:
prefix = self.param(
'prefix', nn.initializers.uniform(),
(n_layers, 1, g_prompt_length, n_heads, embedding_size))
prefix = jnp.tile(prefix, (1, 2, 1, 1, 1))
else:
prefix = self.param(
'prefix', nn.initializers.uniform(),
(n_layers, 2, g_prompt_length, n_heads, embedding_size))
else:
prefix = None
g_prompt_layer_idx = []
if self.prefix_params:
if not self.prefix_params['use_prefix_tune_for_g_prompt']:
total_prompt_len = self.prefix_params['g_prompt_length'] * len(
self.prefix_params['g_prompt_layer_idx'])
# Here, x is a grid of embeddings.
batched_prompt = None
use_prefix_tune_for_e_prompt = False
same_key_value_for_pool = False
e_prompt_layer_idx = []
if self.transformer is not None:
n, h, w, c = x.shape
x = jnp.reshape(x, [n, h * w, c])
# res_vit["embedding"] = x
# put it after class token for now
if self.prompt_params is not None:
# set up number of layers
if isinstance(self.prompt_params['e_prompt_layer_idx'], int):
num_prompted_layers = 1
else:
num_prompted_layers = len(self.prompt_params['e_prompt_layer_idx'])
# set up if using prefix-style prompts or not
use_prefix_tune_for_e_prompt = self.prompt_params[
'use_prefix_tune_for_e_prompt']
if use_prefix_tune_for_e_prompt:
same_key_value_for_pool = self.prompt_params['same_key_value']
e_prompt_layer_idx = self.prompt_params['e_prompt_layer_idx']
# set up number of heads for prefix
num_heads = self.transformer.num_heads
if 'prompt_pool' in self.prompt_params: # pylint: disable=unsupported-membership-test
prompt_pool_params = self.prompt_params['prompt_pool']
if prompt_pool_params.initializer == 'normal':
initializer = nn.initializers.normal()
# for now we don't have other initilizers besides uniform and normal
else:
initializer = nn.initializers.uniform()
prompt_pool_module = prompt.Prompt(
length=prompt_pool_params.length,
embedding_key=prompt_pool_params.embedding_key,
prompt_init=initializer,
name='prompt_pool',
prompt_pool=True,
prompt_key=prompt_pool_params.prompt_key,
pool_size=prompt_pool_params.pool_size,
top_k=prompt_pool_params.top_k,
batchwise_prompt=prompt_pool_params.batchwise_prompt,
prompt_key_init=prompt_pool_params.prompt_key_init,
num_classes_per_task=self
.num_classes_per_task,
num_layers=num_prompted_layers,
use_prefix_tune_for_e_prompt=use_prefix_tune_for_e_prompt,
num_heads=num_heads,
num_tasks=self.num_tasks,
)
res_vit = prompt_pool_module(
x,
prompt_mask,
task_id=task_id,
cls_features=cls_features,
label=label)
batched_prompt = res_vit['batched_prompt']
total_prompt_len = 0
if self.prefix_params:
if not self.prefix_params['use_prefix_tune_for_g_prompt']:
total_prompt_len += self.prefix_params['g_prompt_length'] * len(
self.prefix_params['g_prompt_layer_idx'])
for key in self.prompt_params: # pylint: disable=not-an-iterable
if not use_prefix_tune_for_e_prompt:
if key == 'prompt_pool':
# make it multi-layered prompts
total_prompt_len += self.prompt_params[
key].length * self.prompt_params[
key].top_k * num_prompted_layers
elif key == 'shared_prompt' or key == 'task_specific_prompt':
total_prompt_len += self.prompt_params[
key].length * num_prompted_layers
# If we want to add a class token, add it here.
if self.use_cls_token:
cls = self.param('cls', nn.initializers.zeros, (1, 1, c))
cls = jnp.tile(cls, [n, 1, 1])
x = jnp.concatenate([cls, x], axis=1)
x = Encoder(
name='Transformer',
prefix=prefix,
g_prompt_layer_idx=g_prompt_layer_idx,
prompt=batched_prompt,
e_prompt_layer_idx=e_prompt_layer_idx,
use_prefix_tune_for_e_prompt=use_prefix_tune_for_e_prompt,
use_prefix_tune_for_g_prompt=use_prefix_tune_for_g_prompt,
**self.transformer)(
x, train=self.train)
if self.use_cls_token and self.classifier == 'token':
if self.prompt_params:
x = x[:, total_prompt_len]
else:
x = x[:, 0]
elif self.classifier == 'gap':
x = jnp.mean(x, axis=list(range(1, x.ndim - 1))) # (1,) or (1,2)
elif self.classifier == 'prompt':
x = x[:, 0:total_prompt_len]
if self.reweight_prompt:
reweight = self.param('reweight', nn.initializers.uniform(),
(total_prompt_len,))
reweight = nn.softmax(reweight)
x = jnp.average(x, axis=1, weights=reweight)
else:
x = jnp.mean(x, axis=1)
elif self.use_cls_token and self.prompt_params and self.classifier == 'token+prompt':
x = x[:, 0:total_prompt_len + 1]
x = jnp.mean(x, axis=1)
else:
raise ValueError(f'Invalid classifier={self.classifier}')
# Added for utilizing pretrained features
res_vit['pre_logits'] = x
if self.representation_size is not None:
x = nn.Dense(features=self.representation_size, name='pre_logits')(x)
x = nn.tanh(x)
else:
x = IdentityLayer(name='pre_logits')(x)
if self.norm_pre_logits:
eps = 1e-10
x_norm = jnp.linalg.norm(x, ord=2, axis=-1, keepdims=True)
x = x / (x_norm + eps)
x = nn.Dense(
features=self.num_classes,
name='head',
kernel_init=nn.initializers.zeros)(
x)
x = x / self.temperature
res_vit['logits'] = x
return res_vit
# Mapping model.name -> config.
MODEL_CONFIGS = {}
def _register(get_config):
config = get_config()
MODEL_CONFIGS[config.name] = config
return get_config
@_register
def get_testing_config():
"""Returns the ViT-B/16 configuration."""
config = ml_collections.ConfigDict()
# Only used for testing.
config.name = 'testing'
config.patches = ml_collections.ConfigDict({'size': (16, 16)})
config.hidden_size = 10
config.transformer = ml_collections.ConfigDict()
config.transformer.mlp_dim = 10
config.transformer.num_heads = 2
config.transformer.num_layers = 1
config.transformer.attention_dropout_rate = 0.0
config.transformer.dropout_rate = 0.1
config.classifier = 'token'
config.representation_size = None
return config
@_register
def get_b16_config():
"""Returns the ViT-B/16 configuration."""
config = ml_collections.ConfigDict()
# Name refers to basename in the directory of pretrained models:
# https://console.cloud.google.com/storage/vit_models/
config.name = 'ViT-B_16'
config.patches = ml_collections.ConfigDict({'size': (16, 16)})
config.hidden_size = 768
config.transformer = ml_collections.ConfigDict()
config.transformer.mlp_dim = 3072
config.transformer.num_heads = 12
config.transformer.num_layers = 12
config.transformer.attention_dropout_rate = 0.0
config.transformer.dropout_rate = 0.0
config.classifier = 'token'
config.representation_size = None
return config
@_register
def get_b16_2X2_config(): # pylint: disable=invalid-name
"""Returns the ViT-B/16 configuration."""
config = ml_collections.ConfigDict()
# Name refers to basename in the directory of pretrained models:
# https://console.cloud.google.com/storage/vit_models/
config.name = 'ViT-B_16_2X2'
config.patches = ml_collections.ConfigDict({'size': (2, 2)})
config.hidden_size = 768
config.transformer = ml_collections.ConfigDict()
config.transformer.mlp_dim = 3072
config.transformer.num_heads = 12
config.transformer.num_layers = 12
config.transformer.attention_dropout_rate = 0.0
config.transformer.dropout_rate = 0.0
config.classifier = 'token'
config.representation_size = None
return config
@_register
def get_b16_4X4_config(): # pylint: disable=invalid-name
"""Returns the ViT-B/16 configuration."""
config = ml_collections.ConfigDict()
# Name refers to basename in the directory of pretrained models:
# https://console.cloud.google.com/storage/vit_models/
config.name = 'ViT-B_16_4X4'
config.patches = ml_collections.ConfigDict({'size': (4, 4)})
config.hidden_size = 768
config.transformer = ml_collections.ConfigDict()
config.transformer.mlp_dim = 3072
config.transformer.num_heads = 12
config.transformer.num_layers = 12
config.transformer.attention_dropout_rate = 0.0
config.transformer.dropout_rate = 0.0
config.classifier = 'token'
config.representation_size = None
return config
@_register
def get_b32_config():
"""Returns the ViT-B/32 configuration."""
config = get_b16_config()
config.name = 'ViT-B_32'
config.patches.size = (32, 32)
return config
@_register
def get_l16_config():
"""Returns the ViT-L/16 configuration."""
config = ml_collections.ConfigDict()
# Name refers to basename in the directory of pretrained models:
# https://console.cloud.google.com/storage/vit_models/
config.name = 'ViT-L_16'
config.patches = ml_collections.ConfigDict({'size': (16, 16)})
config.hidden_size = 1024
config.transformer = ml_collections.ConfigDict()
config.transformer.mlp_dim = 4096
config.transformer.num_heads = 16
config.transformer.num_layers = 24
config.transformer.attention_dropout_rate = 0.0
config.transformer.dropout_rate = 0.1
config.classifier = 'token'
config.representation_size = None
return config
@_register
def get_l32_config():
"""Returns the ViT-L/32 configuration."""
config = get_l16_config()
config.transformer.dropout_rate = 0.0
# Name refers to basename in the directory of pretrained models:
# https://console.cloud.google.com/storage/vit_models/
config.name = 'ViT-L_32'
config.patches.size = (32, 32)
return config
@_register
def get_h14_config():
"""Returns the ViT-H/14 configuration."""
config = ml_collections.ConfigDict()
# Name refers to basename in the directory of pretrained models:
# https://console.cloud.google.com/storage/vit_models/
config.name = 'ViT-H_14'
config.patches = ml_collections.ConfigDict({'size': (14, 14)})
config.hidden_size = 1280
config.transformer = ml_collections.ConfigDict()
config.transformer.mlp_dim = 5120
config.transformer.num_heads = 16
config.transformer.num_layers = 32
config.transformer.attention_dropout_rate = 0.0
config.transformer.dropout_rate = 0.1
config.classifier = 'token'
config.representation_size = None
return config
@_register
def get_s16_config():
"""Returns the ViT-S/16 configuration."""
config = ml_collections.ConfigDict()
config.name = 'ViT-S_16'
config.patches = ml_collections.ConfigDict({'size': (16, 16)})
config.hidden_size = 384
config.transformer = ml_collections.ConfigDict()
config.transformer.mlp_dim = 1536
config.transformer.num_heads = 6
config.transformer.num_layers = 12
config.transformer.attention_dropout_rate = 0.0
config.transformer.dropout_rate = 0.0
config.classifier = 'token'
config.representation_size = None
return config
def create_model(name, config):
"""Creates model partial function."""
# del config
if name not in MODEL_CONFIGS:
raise ValueError(f'Model {name} does not exist.')
model_config = MODEL_CONFIGS[name]
model_config = dict(model_config)
model_config.pop('name')
# add pre logits normalization or not
if config.get('norm_pre_logits'):
model_config['norm_pre_logits'] = config.norm_pre_logits
if config.get('temperature'):
model_config['temperature'] = config.temperature
if config.get('use_e_prompt'):
prompt_params = {}
# Specify which layer the prompt should be add on
prompt_params['e_prompt_layer_idx'] = config.get('e_prompt_layer_idx')
# Using prefix-tuning for E-Prompt
prompt_params['use_prefix_tune_for_e_prompt'] = config.get('use_prefix_tune_for_e_prompt')
# If using the same key and value in prefix
prompt_params['same_key_value'] = config.get('same_key_value_for_pool')
if config.prompt_pool:
prompt_params['prompt_pool'] = config.prompt_pool_param
model_config['prompt_params'] = prompt_params
if config.get('use_g_prompt'):
prefix_params = {}
prefix_params['g_prompt_length'] = config.g_prompt_length
prefix_params['g_prompt_layer_idx'] = config.g_prompt_layer_idx
prefix_params['same_key_value'] = config.get('same_key_value_for_shared')
prefix_params['use_prefix_tune_for_g_prompt'] = config.get(
'use_prefix_tune_for_g_prompt')
model_config['prefix_params'] = prefix_params
model_config['use_cls_token'] = config.get('use_cls_token')
if config.get('vit_classifier'):
model_config['classifier'] = config.vit_classifier
if config.get('reweight_prompt'):
model_config['reweight_prompt'] = config.reweight_prompt
if config.get('continual'):
model_config['num_tasks'] = config.continual.num_tasks
model_config['num_classes_per_task'] = config.continual.num_classes_per_task
model_config = ml_collections.ConfigDict(model_config)
return functools.partial(VisionTransformer, **model_config), model_config
def create_original_vit(name):
if name not in MODEL_CONFIGS:
raise ValueError(f'Model {name} does not exist.')
model_config = MODEL_CONFIGS[name]
model_config = dict(model_config)
model_config.pop('name')
model_config = ml_collections.ConfigDict(model_config)
return functools.partial(VisionTransformer, **model_config), model_config