forked from schollz/find
-
Notifications
You must be signed in to change notification settings - Fork 0
/
posterior.go
executable file
·151 lines (143 loc) · 4.51 KB
/
posterior.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
package main
import "math"
func calculatePosterior(res Fingerprint, ps FullParameters) (string, map[string]float64) {
if !ps.Loaded {
ps, _ = openParameters(res.Group)
}
macs := []string{}
W := make(map[string]int)
for v2 := range res.WifiFingerprint {
macs = append(macs, res.WifiFingerprint[v2].Mac)
W[res.WifiFingerprint[v2].Mac] = res.WifiFingerprint[v2].Rssi
}
n, inNetworkAlready := hasNetwork(ps.NetworkMacs, macs)
// Debug.Println(n, inNetworkAlready, ps.NetworkLocs[n])
if !inNetworkAlready {
Warning.Println("Not in network")
Debug.Println(n, inNetworkAlready, ps.NetworkLocs[n], res)
}
PBayes1 := make(map[string]float64)
PBayes2 := make(map[string]float64)
PA := 1.0 / float64(len(ps.NetworkLocs[n]))
PnA := (float64(len(ps.NetworkLocs[n])) - 1.0) / float64(len(ps.NetworkLocs[n]))
for loc := range ps.NetworkLocs[n] {
PBayes1[loc] = float64(0)
PBayes2[loc] = float64(0)
for mac := range W {
weight := float64(0)
nweight := float64(0)
if _, ok := ps.Priors[n].MacFreq[loc][mac]; ok {
weight = float64(ps.Priors[n].MacFreq[loc][mac])
} else {
weight = float64(ps.Priors[n].Special["MacFreqMin"])
}
if _, ok := ps.Priors[n].NMacFreq[loc][mac]; ok {
nweight = float64(ps.Priors[n].NMacFreq[loc][mac])
} else {
nweight = float64(ps.Priors[n].Special["NMacFreqMin"])
}
PBayes1[loc] += math.Log(weight*PA) - math.Log(weight*PA+PnA*nweight)
if float64(ps.MacVariability[mac]) >= ps.Priors[n].Special["VarabilityCutoff"] && W[mac] > MinRssi {
ind := int(W[mac] - MinRssi)
if len(ps.Priors[n].P[loc][mac]) > 0 {
PBA := float64(ps.Priors[n].P[loc][mac][ind])
PBnA := float64(ps.Priors[n].NP[loc][mac][ind])
if PBA > 0 {
PBayes2[loc] += (math.Log(PBA*PA) - math.Log(PBA*PA+PBnA*PnA))
} else {
PBayes2[loc] += -1
}
}
}
}
}
PBayes1 = normalizeBayes(PBayes1)
PBayes2 = normalizeBayes(PBayes2)
PBayesMix := make(map[string]float64)
bestLocation := ""
maxVal := float64(-100)
for key := range PBayes1 {
PBayesMix[key] = ps.Priors[n].Special["MixIn"]*PBayes1[key] + (1-ps.Priors[n].Special["MixIn"])*PBayes2[key]
if PBayesMix[key] > maxVal {
maxVal = PBayesMix[key]
bestLocation = key
}
}
return bestLocation, PBayesMix
}
func calculatePosteriorThreadSafe(res Fingerprint, ps FullParameters, cutoff float64) (map[string]float64, map[string]float64) {
if !ps.Loaded {
ps, _ = openParameters(res.Group)
}
macs := []string{}
W := make(map[string]int)
for v2 := range res.WifiFingerprint {
macs = append(macs, res.WifiFingerprint[v2].Mac)
W[res.WifiFingerprint[v2].Mac] = res.WifiFingerprint[v2].Rssi
}
n, inNetworkAlready := hasNetwork(ps.NetworkMacs, macs)
// Debug.Println(n, inNetworkAlready, ps.NetworkLocs[n])
if !inNetworkAlready {
Warning.Println("Not in network")
Debug.Println(n, inNetworkAlready, ps.NetworkLocs[n], res)
}
PBayes1 := make(map[string]float64)
PBayes2 := make(map[string]float64)
PA := 1.0 / float64(len(ps.NetworkLocs[n]))
PnA := (float64(len(ps.NetworkLocs[n])) - 1.0) / float64(len(ps.NetworkLocs[n]))
for loc := range ps.NetworkLocs[n] {
PBayes1[loc] = float64(0)
PBayes2[loc] = float64(0)
for mac := range W {
weight := float64(0)
nweight := float64(0)
if _, ok := ps.Priors[n].MacFreq[loc][mac]; ok {
weight = float64(ps.Priors[n].MacFreq[loc][mac])
} else {
weight = float64(ps.Priors[n].Special["MacFreqMin"])
}
if _, ok := ps.Priors[n].NMacFreq[loc][mac]; ok {
nweight = float64(ps.Priors[n].NMacFreq[loc][mac])
} else {
nweight = float64(ps.Priors[n].Special["NMacFreqMin"])
}
PBayes1[loc] += math.Log(weight*PA) - math.Log(weight*PA+PnA*nweight)
if float64(ps.MacVariability[mac]) >= cutoff && W[mac] > MinRssi {
ind := int(W[mac] - MinRssi)
if len(ps.Priors[n].P[loc][mac]) > 0 {
PBA := float64(ps.Priors[n].P[loc][mac][ind])
PBnA := float64(ps.Priors[n].NP[loc][mac][ind])
if PBA > 0 {
PBayes2[loc] += (math.Log(PBA*PA) - math.Log(PBA*PA+PBnA*PnA))
} else {
PBayes2[loc] += -1
}
}
}
}
}
PBayes1 = normalizeBayes(PBayes1)
PBayes2 = normalizeBayes(PBayes2)
return PBayes1, PBayes2
}
func normalizeBayes(bayes map[string]float64) map[string]float64 {
vals := make([]float64, len(bayes))
i := 0
for _, val := range bayes {
vals[i] = val
i++
}
mean := average64(vals)
sd := standardDeviation64(vals)
for key := range bayes {
if sd < 1e-5 {
bayes[key] = 0
} else {
bayes[key] = (bayes[key] - mean) / sd
}
if math.IsNaN(bayes[key]) {
bayes[key] = 0
}
}
return bayes
}