forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSILGenConvert.cpp
671 lines (576 loc) · 26.6 KB
/
SILGenConvert.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
//===--- SILGenConvert.cpp - Type Conversion Routines ---------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "SILGen.h"
#include "Scope.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Fallthrough.h"
#include "swift/Basic/type_traits.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/TypeLowering.h"
#include "Initialization.h"
#include "LValue.h"
#include "RValue.h"
#include "ArgumentSource.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace swift;
using namespace Lowering;
// FIXME: need to sit down and abstract away differences between
// SGF::emitInjectOptionalInto(), SGF::emitInjectOptionalValueInto(),
// SGF::getOptionalSomeValue(), and this function...
ManagedValue
SILGenFunction::emitInjectOptional(SILLocation loc,
ManagedValue v,
CanType inputFormalType,
CanType substFormalType,
const TypeLowering &expectedTL,
SGFContext ctxt) {
// Optional's payload is currently maximally abstracted. FIXME: Eventually
// it shouldn't be.
auto opaque = AbstractionPattern::getOpaque();
OptionalTypeKind substOTK;
auto substObjectType = substFormalType.getAnyOptionalObjectType(substOTK);
auto loweredTy = getLoweredType(opaque, substObjectType);
if (v.getType() != loweredTy)
v = emitTransformedValue(loc, v,
AbstractionPattern(inputFormalType), inputFormalType,
opaque, substObjectType);
auto someDecl = getASTContext().getOptionalSomeDecl(substOTK);
SILType optTy = getLoweredType(substFormalType);
if (v.getType().isAddress()) {
auto buf = getBufferForExprResult(loc, optTy.getObjectType(), ctxt);
auto payload = B.createInitEnumDataAddr(loc, buf, someDecl,
v.getType());
// FIXME: Is it correct to use IsTake here even if v doesn't have a cleanup?
B.createCopyAddr(loc, v.forward(*this), payload,
IsTake, IsInitialization);
B.createInjectEnumAddr(loc, buf, someDecl);
v = manageBufferForExprResult(buf, expectedTL, ctxt);
} else {
auto some = B.createEnum(loc, v.getValue(), someDecl, optTy);
v = ManagedValue(some, v.getCleanup());
}
return v;
}
void SILGenFunction::emitInjectOptionalValueInto(SILLocation loc,
ArgumentSource &&value,
SILValue dest,
const TypeLowering &optTL) {
SILType optType = optTL.getLoweredType();
OptionalTypeKind optionalKind;
auto loweredPayloadTy
= optType.getAnyOptionalObjectType(SGM.M, optionalKind);
assert(optionalKind != OTK_None);
// Project out the payload area.
auto someDecl = getASTContext().getOptionalSomeDecl(optionalKind);
auto destPayload = B.createInitEnumDataAddr(loc, dest,
someDecl,
loweredPayloadTy.getAddressType());
CanType formalOptType = optType.getSwiftRValueType();
auto archetype = formalOptType->getNominalOrBoundGenericNominal()
->getGenericParams()->getPrimaryArchetypes()[0];
AbstractionPattern origType(archetype);
// Emit the value into the payload area.
TemporaryInitialization emitInto(destPayload, CleanupHandle::invalid());
auto &payloadTL = getTypeLowering(origType, value.getSubstType());
std::move(value).forwardInto(*this, origType,
&emitInto,
payloadTL);
// Inject the tag.
B.createInjectEnumAddr(loc, dest, someDecl);
}
void SILGenFunction::emitInjectOptionalNothingInto(SILLocation loc,
SILValue dest,
const TypeLowering &optTL) {
OptionalTypeKind OTK;
optTL.getLoweredType().getSwiftRValueType()->getAnyOptionalObjectType(OTK);
assert(OTK != OTK_None);
B.createInjectEnumAddr(loc, dest, getASTContext().getOptionalNoneDecl(OTK));
}
/// Return a value for an optional ".None" of the specified type. This only
/// works for loadable enum types.
SILValue SILGenFunction::getOptionalNoneValue(SILLocation loc,
const TypeLowering &optTL) {
assert(optTL.isLoadable() && "Address-only optionals cannot use this");
OptionalTypeKind OTK;
optTL.getLoweredType().getSwiftRValueType()->getAnyOptionalObjectType(OTK);
assert(OTK != OTK_None);
return B.createEnum(loc, SILValue(), getASTContext().getOptionalNoneDecl(OTK),
optTL.getLoweredType());
}
/// Return a value for an optional ".Some(x)" of the specified type. This only
/// works for loadable enum types.
ManagedValue SILGenFunction::
getOptionalSomeValue(SILLocation loc, ManagedValue value,
const TypeLowering &optTL) {
assert(optTL.isLoadable() && "Address-only optionals cannot use this");
SILType optType = optTL.getLoweredType();
CanType formalOptType = optType.getSwiftRValueType();
OptionalTypeKind OTK;
auto formalObjectType = formalOptType->getAnyOptionalObjectType(OTK)
->getCanonicalType();
assert(OTK != OTK_None);
auto someDecl = getASTContext().getOptionalSomeDecl(OTK);
auto archetype = formalOptType->getNominalOrBoundGenericNominal()
->getGenericParams()->getPrimaryArchetypes()[0];
AbstractionPattern origType(archetype);
// Reabstract input value to the type expected by the enum.
value = emitSubstToOrigValue(loc, value, origType, formalObjectType);
SILValue result =
B.createEnum(loc, value.forward(*this), someDecl,
optTL.getLoweredType());
return emitManagedRValueWithCleanup(result, optTL);
}
static Substitution getSimpleSubstitution(GenericParamList &generics,
CanType typeArg) {
assert(generics.getParams().size() == 1);
auto typeParamDecl = generics.getParams().front();
return Substitution{typeParamDecl->getArchetype(), typeArg, {}};
}
/// Create the correct substitution for calling the given function at
/// the given type.
static Substitution getSimpleSubstitution(FuncDecl *fn, CanType typeArg) {
auto polyFnType =
cast<PolymorphicFunctionType>(fn->getType()->getCanonicalType());
return getSimpleSubstitution(polyFnType->getGenericParams(), typeArg);
}
static CanType getOptionalValueType(SILType optType,
OptionalTypeKind &optionalKind) {
auto generic = cast<BoundGenericType>(optType.getSwiftRValueType());
optionalKind = generic->getDecl()->classifyAsOptionalType();
assert(optionalKind);
return generic.getGenericArgs()[0];
}
void SILGenFunction::emitPreconditionOptionalHasValue(SILLocation loc,
SILValue addr) {
OptionalTypeKind OTK;
getOptionalValueType(addr.getType().getObjectType(), OTK);
// Generate code to the optional is present, and if not abort with a message
// (provided by the stdlib).
SILBasicBlock *contBB = createBasicBlock();
SILBasicBlock *failBB = createBasicBlock();
auto NoneEnumElementDecl = getASTContext().getOptionalNoneDecl(OTK);
B.createSwitchEnumAddr(loc, addr, /*defaultDest*/contBB,
{ { NoneEnumElementDecl, failBB }});
B.emitBlock(failBB);
// Call the standard library implementation of _diagnoseUnexpectedNilOptional.
if (auto diagnoseFailure =
getASTContext().getDiagnoseUnexpectedNilOptional(nullptr)) {
emitApplyOfLibraryIntrinsic(loc, diagnoseFailure, {}, {},
SGFContext());
}
B.createUnreachable(loc);
B.clearInsertionPoint();
B.emitBlock(contBB);
}
SILValue SILGenFunction::emitDoesOptionalHaveValue(SILLocation loc,
SILValue addrOrValue) {
SILType optType = addrOrValue.getType().getObjectType();
OptionalTypeKind optionalKind;
getOptionalValueType(optType, optionalKind);
auto boolTy = SILType::getBuiltinIntegerType(1, getASTContext());
SILValue yes = B.createIntegerLiteral(loc, boolTy, 1);
SILValue no = B.createIntegerLiteral(loc, boolTy, 0);
auto someDecl = getASTContext().getOptionalSomeDecl(optionalKind);
if (addrOrValue.getType().isAddress())
return B.createSelectEnumAddr(loc, addrOrValue, boolTy, no,
std::make_pair(someDecl, yes));
return B.createSelectEnum(loc, addrOrValue, boolTy, no,
std::make_pair(someDecl, yes));
}
ManagedValue SILGenFunction::emitCheckedGetOptionalValueFrom(SILLocation loc,
ManagedValue src,
const TypeLowering &optTL,
SGFContext C) {
SILType optType = src.getType().getObjectType();
OptionalTypeKind optionalKind;
CanType valueType = getOptionalValueType(optType, optionalKind);
FuncDecl *fn = getASTContext().getGetOptionalValueDecl(nullptr, optionalKind);
Substitution sub = getSimpleSubstitution(fn, valueType);
// The intrinsic takes its parameter indirectly.
if (src.getType().isObject()) {
auto buf = emitTemporaryAllocation(loc, src.getType());
B.createStore(loc, src.forward(*this), buf);
src = emitManagedBufferWithCleanup(buf);
}
return emitApplyOfLibraryIntrinsic(loc, fn, sub, src, C);
}
ManagedValue SILGenFunction::emitUncheckedGetOptionalValueFrom(SILLocation loc,
ManagedValue addrOrValue,
const TypeLowering &optTL,
SGFContext C) {
OptionalTypeKind OTK;
SILType origPayloadTy =
addrOrValue.getType().getAnyOptionalObjectType(SGM.M, OTK);
auto formalOptionalTy = addrOrValue.getType().getSwiftRValueType();
auto formalPayloadTy = formalOptionalTy
->getAnyOptionalObjectType()
->getCanonicalType();
auto someDecl = getASTContext().getOptionalSomeDecl(OTK);
ManagedValue payload;
// Take the payload from the optional. Cheat a bit in the +0
// case—UncheckedTakeEnumData will never actually invalidate an Optional enum
// value.
SILValue payloadVal;
if (!addrOrValue.getType().isAddress()) {
payloadVal = B.createUncheckedEnumData(loc, addrOrValue.forward(*this),
someDecl);
} else {
payloadVal =
B.createUncheckedTakeEnumDataAddr(loc, addrOrValue.forward(*this),
someDecl, origPayloadTy);
if (optTL.isLoadable())
payloadVal = B.createLoad(loc, payloadVal);
}
// Produce a correctly managed value.
if (addrOrValue.hasCleanup())
payload = emitManagedRValueWithCleanup(payloadVal);
else
payload = ManagedValue::forUnmanaged(payloadVal);
// Reabstract it to the substituted form, if necessary.
return emitOrigToSubstValue(loc, payload, AbstractionPattern::getOpaque(),
formalPayloadTy, C);
}
/// Emit an optional-to-optional transformation.
ManagedValue
SILGenFunction::emitOptionalToOptional(SILLocation loc,
ManagedValue input,
SILType resultTy,
const ValueTransform &transformValue) {
auto contBB = createBasicBlock();
auto isNotPresentBB = createBasicBlock();
auto isPresentBB = createBasicBlock();
// Create a temporary for the output optional.
auto &resultTL = getTypeLowering(resultTy);
// If the result is address-only, we need to return something in memory,
// otherwise the result is the BBArgument in the merge point.
SILValue result;
if (resultTL.isAddressOnly())
result = emitTemporaryAllocation(loc, resultTy);
else
result = new (F.getModule()) SILArgument(contBB, resultTL.getLoweredType());
// Branch on whether the input is optional, this doesn't consume the value.
auto isPresent = emitDoesOptionalHaveValue(loc, input.getValue());
B.createCondBranch(loc, isPresent, isPresentBB, isNotPresentBB);
// If it's present, apply the recursive transformation to the value.
B.emitBlock(isPresentBB);
SILValue branchArg;
{
// Don't allow cleanups to escape the conditional block.
FullExpr presentScope(Cleanups, CleanupLocation::get(loc));
CanType resultValueTy =
resultTy.getSwiftRValueType().getAnyOptionalObjectType();
assert(resultValueTy);
SILType loweredResultValueTy = getLoweredType(resultValueTy);
// Pull the value out. This will load if the value is not address-only.
auto &inputTL = getTypeLowering(input.getType());
auto inputValue = emitUncheckedGetOptionalValueFrom(loc, input,
inputTL, SGFContext());
// Transform it.
auto resultValue = transformValue(*this, loc, inputValue,
loweredResultValueTy);
// Inject that into the result type if the result is address-only.
if (resultTL.isAddressOnly()) {
ArgumentSource resultValueRV(loc, RValue(resultValue, resultValueTy));
emitInjectOptionalValueInto(loc, std::move(resultValueRV),
result, resultTL);
} else {
resultValue = getOptionalSomeValue(loc, resultValue, resultTL);
branchArg = resultValue.forward(*this);
}
}
if (branchArg)
B.createBranch(loc, contBB, branchArg);
else
B.createBranch(loc, contBB);
// If it's not present, inject 'nothing' into the result.
B.emitBlock(isNotPresentBB);
if (resultTL.isAddressOnly()) {
emitInjectOptionalNothingInto(loc, result, resultTL);
B.createBranch(loc, contBB);
} else {
branchArg = getOptionalNoneValue(loc, resultTL);
B.createBranch(loc, contBB, branchArg);
}
// Continue.
B.emitBlock(contBB);
if (resultTL.isAddressOnly())
return emitManagedBufferWithCleanup(result, resultTL);
return emitManagedRValueWithCleanup(result, resultTL);
}
/// Destroy the value, unless it was both uniquely referenced and consumed.
void SILGenFunction::OpaqueValueState::destroy(SILGenFunction &gen,
SILLocation loc) {
if (isConsumable && !hasBeenConsumed) {
auto &lowering = gen.getTypeLowering(value.getType().getSwiftRValueType());
lowering.emitDestroyRValue(gen.B, loc, value);
}
}
SILGenFunction::OpaqueValueRAII::~OpaqueValueRAII() {
auto entry = Self.OpaqueValues.find(OpaqueValue);
entry->second.destroy(Self, OpaqueValue);
Self.OpaqueValues.erase(entry);
}
namespace {
/// This is an initialization for an address-only existential in memory.
class ExistentialInitialization : public KnownAddressInitialization {
CleanupHandle Cleanup;
public:
/// \param existential The existential container
/// \param address Address of value in existential container
/// \param concreteFormalType Unlowered AST type of value
/// \param repr Representation of container
ExistentialInitialization(SILValue existential, SILValue address,
CanType concreteFormalType,
ExistentialRepresentation repr,
SILGenFunction &gen)
: KnownAddressInitialization(address) {
// Any early exit before we store a value into the existential must
// clean up the existential container.
Cleanup = gen.enterDeinitExistentialCleanup(existential,
concreteFormalType,
repr);
}
void finishInitialization(SILGenFunction &gen) {
gen.Cleanups.setCleanupState(Cleanup, CleanupState::Dead);
}
};
}
ManagedValue SILGenFunction::emitExistentialErasure(
SILLocation loc,
CanType concreteFormalType,
const TypeLowering &concreteTL,
const TypeLowering &existentialTL,
const ArrayRef<ProtocolConformance *> &conformances,
SGFContext C,
llvm::function_ref<ManagedValue (SGFContext)> F) {
// Mark the needed conformances as used.
for (auto *conformance : conformances)
SGM.useConformance(conformance);
switch (existentialTL.getLoweredType().getObjectType()
.getPreferredExistentialRepresentation(SGM.M, concreteFormalType)) {
case ExistentialRepresentation::None:
llvm_unreachable("not an existential type");
case ExistentialRepresentation::Metatype: {
assert(existentialTL.isLoadable());
SILValue metatype = F(SGFContext()).getUnmanagedValue();
assert(metatype.getType().castTo<AnyMetatypeType>()->getRepresentation()
== MetatypeRepresentation::Thick);
auto upcast =
B.createInitExistentialMetatype(loc, metatype,
existentialTL.getLoweredType(),
conformances);
return ManagedValue::forUnmanaged(upcast);
}
case ExistentialRepresentation::Class: {
assert(existentialTL.isLoadable());
ManagedValue sub = F(SGFContext());
SILValue v = B.createInitExistentialRef(loc,
existentialTL.getLoweredType(),
concreteFormalType,
sub.getValue(),
conformances);
return ManagedValue(v, sub.getCleanup());
}
case ExistentialRepresentation::Boxed: {
// Allocate the existential.
auto box = B.createAllocExistentialBox(loc,
existentialTL.getLoweredType(),
concreteFormalType,
concreteTL.getLoweredType(),
conformances);
auto existential = box->getExistentialResult();
auto valueAddr = box->getValueAddressResult();
// Initialize the concrete value in-place.
InitializationPtr init(
new ExistentialInitialization(existential, valueAddr, concreteFormalType,
ExistentialRepresentation::Boxed,
*this));
ManagedValue mv = F(SGFContext(init.get()));
if (!mv.isInContext()) {
mv.forwardInto(*this, loc, init->getAddress());
init->finishInitialization(*this);
}
return emitManagedRValueWithCleanup(existential);
}
case ExistentialRepresentation::Opaque: {
// Allocate the existential.
SILValue existential =
getBufferForExprResult(loc, existentialTL.getLoweredType(), C);
// Allocate the concrete value inside the container.
SILValue valueAddr = B.createInitExistentialAddr(
loc, existential,
concreteFormalType,
concreteTL.getLoweredType(),
conformances);
// Initialize the concrete value in-place.
InitializationPtr init(
new ExistentialInitialization(existential, valueAddr, concreteFormalType,
ExistentialRepresentation::Opaque,
*this));
ManagedValue mv = F(SGFContext(init.get()));
if (!mv.isInContext()) {
mv.forwardInto(*this, loc, init->getAddress());
init->finishInitialization(*this);
}
return manageBufferForExprResult(existential, existentialTL, C);
}
}
}
ManagedValue SILGenFunction::emitClassMetatypeToObject(SILLocation loc,
ManagedValue v,
SILType resultTy) {
SILValue value = v.getUnmanagedValue();
// Convert the metatype to objc representation.
auto metatypeTy = value.getType().castTo<MetatypeType>();
auto objcMetatypeTy = CanMetatypeType::get(metatypeTy.getInstanceType(),
MetatypeRepresentation::ObjC);
value = B.createThickToObjCMetatype(loc, value,
SILType::getPrimitiveObjectType(objcMetatypeTy));
// Convert to an object reference.
value = B.createObjCMetatypeToObject(loc, value, resultTy);
return ManagedValue::forUnmanaged(value);
}
ManagedValue SILGenFunction::emitExistentialMetatypeToObject(SILLocation loc,
ManagedValue v,
SILType resultTy) {
SILValue value = v.getUnmanagedValue();
// Convert the metatype to objc representation.
auto metatypeTy = value.getType().castTo<ExistentialMetatypeType>();
auto objcMetatypeTy = CanExistentialMetatypeType::get(
metatypeTy.getInstanceType(),
MetatypeRepresentation::ObjC);
value = B.createThickToObjCMetatype(loc, value,
SILType::getPrimitiveObjectType(objcMetatypeTy));
// Convert to an object reference.
value = B.createObjCExistentialMetatypeToObject(loc, value, resultTy);
return ManagedValue::forUnmanaged(value);
}
ManagedValue SILGenFunction::emitProtocolMetatypeToObject(SILLocation loc,
CanType inputTy,
SILType resultTy) {
ProtocolDecl *protocol = inputTy->castTo<MetatypeType>()
->getInstanceType()->castTo<ProtocolType>()->getDecl();
SILValue value = B.createObjCProtocol(loc, protocol, resultTy);
// Protocol objects, despite being global objects, inherit default reference
// counting semantics from NSObject, so we need to retain the protocol
// reference when we use it to prevent it being released and attempting to
// deallocate itself. It doesn't matter if we ever actually clean up that
// retain though.
B.createStrongRetain(loc, value);
return ManagedValue::forUnmanaged(value);
}
SILGenFunction::OpaqueValueState
SILGenFunction::emitOpenExistential(
SILLocation loc,
ManagedValue existentialValue,
CanArchetypeType openedArchetype,
SILType loweredOpenedType) {
// Open the existential value into the opened archetype value.
bool isUnique = true;
bool canConsume;
SILValue archetypeValue;
SILType existentialType = existentialValue.getType();
switch (existentialType.getPreferredExistentialRepresentation(SGM.M)) {
case ExistentialRepresentation::Opaque:
assert(existentialType.isAddress());
archetypeValue = B.createOpenExistentialAddr(
loc, existentialValue.forward(*this),
loweredOpenedType);
if (existentialValue.hasCleanup()) {
canConsume = true;
// Leave a cleanup to deinit the existential container.
enterDeinitExistentialCleanup(existentialValue.getValue(), CanType(),
ExistentialRepresentation::Opaque);
} else {
canConsume = false;
}
break;
case ExistentialRepresentation::Metatype:
assert(existentialType.isObject());
archetypeValue = B.createOpenExistentialMetatype(
loc, existentialValue.forward(*this),
loweredOpenedType);
// Metatypes are always trivial. Consuming would be a no-op.
canConsume = false;
break;
case ExistentialRepresentation::Class:
assert(existentialType.isObject());
archetypeValue = B.createOpenExistentialRef(
loc, existentialValue.forward(*this),
loweredOpenedType);
canConsume = existentialValue.hasCleanup();
break;
case ExistentialRepresentation::Boxed:
if (existentialType.isAddress()) {
existentialValue = emitLoad(loc, existentialValue.getValue(),
getTypeLowering(existentialType),
SGFContext::AllowGuaranteedPlusZero,
IsNotTake);
}
existentialType = existentialValue.getType();
assert(existentialType.isObject());
// NB: Don't forward the cleanup, because consuming a boxed value won't
// consume the box reference.
archetypeValue = B.createOpenExistentialBox(
loc, existentialValue.getValue(),
loweredOpenedType);
// The boxed value can't be assumed to be uniquely referenced. We can never
// consume it.
// TODO: We could use isUniquelyReferenced to shorten the duration of
// the box to the point that the opaque value is copied out.
isUnique = false;
canConsume = false;
break;
case ExistentialRepresentation::None:
llvm_unreachable("not existential");
}
setArchetypeOpeningSite(openedArchetype, archetypeValue);
assert(!canConsume || isUnique);
return SILGenFunction::OpaqueValueState{
archetypeValue,
/*isConsumable*/ canConsume,
/*hasBeenConsumed*/ false
};
}
ManagedValue SILGenFunction::manageOpaqueValue(OpaqueValueState &entry,
SILLocation loc,
SGFContext C) {
// If the context wants a +0 value, guaranteed or immediate, we can
// give it to them, because OpenExistential emission guarantees the
// value.
if (C.isGuaranteedPlusZeroOk()) {
return ManagedValue::forUnmanaged(entry.value);
}
// If the opaque value is consumable, we can just return the
// value with a cleanup. There is no need to retain it separately.
if (entry.isConsumable) {
assert(!entry.hasBeenConsumed
&& "Uniquely-referenced opaque value already consumed");
entry.hasBeenConsumed = true;
return emitManagedRValueWithCleanup(entry.value);
}
// If the context wants us to initialize a buffer, copy there instead
// of making a temporary allocation.
if (auto I = C.getEmitInto()) {
if (SILValue address = I->getAddressForInPlaceInitialization()) {
ManagedValue::forUnmanaged(entry.value).copyInto(*this, address, loc);
I->finishInitialization(*this);
return ManagedValue::forInContext();
}
}
// Otherwise, copy the value into a temporary.
return ManagedValue::forUnmanaged(entry.value).copyUnmanaged(*this, loc);
}