|
| 1 | +""" |
| 2 | +Copied from |
| 3 | +https://github.com/flowersteam/teachDeepRL/blob/master/teachDRL/teachers/algos/alp_gmm.py |
| 4 | +@misc{portelas2019teacher, |
| 5 | + title={Teacher algorithms for curriculum learning of Deep RL in continuously parameterized environments}, |
| 6 | + author={Rémy Portelas and Cédric Colas and Katja Hofmann and Pierre-Yves Oudeyer}, |
| 7 | + year={2019}, |
| 8 | + eprint={1910.07224}, |
| 9 | + archivePrefix={arXiv}, |
| 10 | + primaryClass={cs.LG} |
| 11 | +} |
| 12 | +""" |
| 13 | + |
| 14 | +from sklearn.mixture import GaussianMixture as GMM |
| 15 | +import numpy as np |
| 16 | +from gym.spaces import Box |
| 17 | +from alp.dataset import BufferedDataset |
| 18 | + |
| 19 | + |
| 20 | +def proportional_choice(v, eps=0.0): |
| 21 | + if np.sum(v) == 0 or np.random.rand() < eps: |
| 22 | + return np.random.randint(np.size(v)) |
| 23 | + else: |
| 24 | + probas = np.array(v) / np.sum(v) |
| 25 | + return np.where(np.random.multinomial(1, probas) == 1)[0][0] |
| 26 | + |
| 27 | + |
| 28 | +# Absolute Learning Progress (ALP) computer object |
| 29 | +# It uses a buffered kd-tree to efficiently implement a k-nearest-neighbor algorithm |
| 30 | +class EmpiricalALPComputer: |
| 31 | + def __init__(self, task_size, max_size=None, buffer_size=500): |
| 32 | + self.alp_knn = BufferedDataset( |
| 33 | + 1, task_size, buffer_size=buffer_size, lateness=0, max_size=max_size |
| 34 | + ) |
| 35 | + |
| 36 | + def compute_alp(self, task, reward): |
| 37 | + alp = 0 |
| 38 | + if len(self.alp_knn) > 5: |
| 39 | + # Compute absolute learning progress for new task |
| 40 | + |
| 41 | + # 1 - Retrieve closest previous task |
| 42 | + dist, idx = self.alp_knn.nn_y(task) |
| 43 | + |
| 44 | + # 2 - Retrieve corresponding reward |
| 45 | + closest_previous_task_reward = self.alp_knn.get_x(idx[0]) |
| 46 | + |
| 47 | + # 3 - Compute alp as absolute difference in reward |
| 48 | + lp = reward - closest_previous_task_reward |
| 49 | + alp = np.abs(lp) |
| 50 | + |
| 51 | + # Add to database |
| 52 | + self.alp_knn.add_xy(reward, task) |
| 53 | + return alp |
| 54 | + |
| 55 | + |
| 56 | +# Absolute Learning Progress - Gaussian Mixture Model |
| 57 | +# mins / maxs are vectors defining task space boundaries (ex: mins=[0,0,0] maxs=[1,1,1]) |
| 58 | +class ALPGMM: |
| 59 | + def __init__(self, mins, maxs, seed=None, params=dict()): |
| 60 | + self.seed = seed |
| 61 | + if not seed: |
| 62 | + self.seed = np.random.randint(42, 424242) |
| 63 | + np.random.seed(self.seed) |
| 64 | + |
| 65 | + # Task space boundaries |
| 66 | + self.mins = np.array(mins) |
| 67 | + self.maxs = np.array(maxs) |
| 68 | + |
| 69 | + # Range of number of Gaussians to try when fitting the GMM |
| 70 | + self.potential_ks = ( |
| 71 | + np.arange(2, 11, 1) |
| 72 | + if "potential_ks" not in params |
| 73 | + else params["potential_ks"] |
| 74 | + ) |
| 75 | + # Restart new fit by initializing with last fit |
| 76 | + self.warm_start = False if "warm_start" not in params else params["warm_start"] |
| 77 | + # Fitness criterion when selecting best GMM among range of GMMs varying in number of Gaussians. |
| 78 | + self.gmm_fitness_fun = ( |
| 79 | + "aic" if "gmm_fitness_fun" not in params else params["gmm_fitness_fun"] |
| 80 | + ) |
| 81 | + # Number of Expectation-Maximization trials when fitting |
| 82 | + self.nb_em_init = 1 if "nb_em_init" not in params else params["nb_em_init"] |
| 83 | + # Number of episodes between two fit of the GMM |
| 84 | + self.fit_rate = 250 if "fit_rate" not in params else params["fit_rate"] |
| 85 | + self.nb_random = self.fit_rate # Number of bootstrapping episodes |
| 86 | + |
| 87 | + # Ratio of randomly sampled tasks VS tasks sampling using GMM |
| 88 | + self.random_task_ratio = ( |
| 89 | + 0.2 if "random_task_ratio" not in params else params["random_task_ratio"] |
| 90 | + ) |
| 91 | + self.random_task_generator = Box(self.mins, self.maxs, dtype=np.float32) |
| 92 | + |
| 93 | + # Maximal number of episodes to account for when computing ALP |
| 94 | + alp_max_size = None if "alp_max_size" not in params else params["alp_max_size"] |
| 95 | + alp_buffer_size = ( |
| 96 | + 500 if "alp_buffer_size" not in params else params["alp_buffer_size"] |
| 97 | + ) |
| 98 | + |
| 99 | + # Init ALP computer |
| 100 | + self.alp_computer = EmpiricalALPComputer( |
| 101 | + len(mins), max_size=alp_max_size, buffer_size=alp_buffer_size |
| 102 | + ) |
| 103 | + |
| 104 | + self.tasks = [] |
| 105 | + self.alps = [] |
| 106 | + self.tasks_alps = [] |
| 107 | + |
| 108 | + # Init GMMs |
| 109 | + self.potential_gmms = [self.init_gmm(k) for k in self.potential_ks] |
| 110 | + |
| 111 | + # Boring book-keeping |
| 112 | + self.bk = { |
| 113 | + "weights": [], |
| 114 | + "covariances": [], |
| 115 | + "means": [], |
| 116 | + "tasks_alps": [], |
| 117 | + "episodes": [], |
| 118 | + } |
| 119 | + |
| 120 | + def init_gmm(self, nb_gaussians): |
| 121 | + return GMM( |
| 122 | + n_components=nb_gaussians, |
| 123 | + covariance_type="full", |
| 124 | + random_state=self.seed, |
| 125 | + warm_start=self.warm_start, |
| 126 | + n_init=self.nb_em_init, |
| 127 | + ) |
| 128 | + |
| 129 | + def get_nb_gmm_params(self, gmm): |
| 130 | + # assumes full covariance |
| 131 | + # see https://stats.stackexchange.com/questions/229293/the-number-of-parameters-in-gaussian-mixture-model |
| 132 | + nb_gmms = gmm.get_params()["n_components"] |
| 133 | + d = len(self.mins) |
| 134 | + params_per_gmm = (d * d - d) / 2 + 2 * d + 1 |
| 135 | + return nb_gmms * params_per_gmm - 1 |
| 136 | + |
| 137 | + def update(self, task, reward): |
| 138 | + self.tasks.append(task) |
| 139 | + |
| 140 | + # Compute corresponding ALP |
| 141 | + self.alps.append(self.alp_computer.compute_alp(task, reward)) |
| 142 | + |
| 143 | + # Concatenate task vector with ALP dimension |
| 144 | + self.tasks_alps.append(np.array(task.tolist() + [self.alps[-1]])) |
| 145 | + |
| 146 | + if len(self.tasks) >= self.nb_random: # If initial bootstrapping is done |
| 147 | + if (len(self.tasks) % self.fit_rate) == 0: # Time to fit |
| 148 | + # 1 - Retrieve last <fit_rate> (task, reward) pairs |
| 149 | + cur_tasks_alps = np.array(self.tasks_alps[-self.fit_rate :]) |
| 150 | + |
| 151 | + # 2 - Fit batch of GMMs with varying number of Gaussians |
| 152 | + self.potential_gmms = [ |
| 153 | + g.fit(cur_tasks_alps) for g in self.potential_gmms |
| 154 | + ] |
| 155 | + |
| 156 | + # 3 - Compute fitness and keep best GMM |
| 157 | + fitnesses = [] |
| 158 | + if self.gmm_fitness_fun == "bic": # Bayesian Information Criterion |
| 159 | + fitnesses = [m.bic(cur_tasks_alps) for m in self.potential_gmms] |
| 160 | + elif self.gmm_fitness_fun == "aic": # Akaike Information Criterion |
| 161 | + fitnesses = [m.aic(cur_tasks_alps) for m in self.potential_gmms] |
| 162 | + elif self.gmm_fitness_fun == "aicc": # Modified AIC |
| 163 | + n = self.fit_rate |
| 164 | + fitnesses = [] |
| 165 | + for l, m in enumerate(self.potential_gmms): |
| 166 | + k = self.get_nb_gmm_params(m) |
| 167 | + penalty = (2 * k * (k + 1)) / (n - k - 1) |
| 168 | + fitnesses.append(m.aic(cur_tasks_alps) + penalty) |
| 169 | + else: |
| 170 | + raise NotImplementedError |
| 171 | + exit(1) |
| 172 | + self.gmm = self.potential_gmms[np.argmin(fitnesses)] |
| 173 | + |
| 174 | + # book-keeping |
| 175 | + self.bk["weights"].append(self.gmm.weights_.copy()) |
| 176 | + self.bk["covariances"].append(self.gmm.covariances_.copy()) |
| 177 | + self.bk["means"].append(self.gmm.means_.copy()) |
| 178 | + self.bk["tasks_alps"] = self.tasks_alps |
| 179 | + self.bk["episodes"].append(len(self.tasks)) |
| 180 | + |
| 181 | + def sample_task(self): |
| 182 | + if (len(self.tasks) < self.nb_random) or ( |
| 183 | + np.random.random() < self.random_task_ratio |
| 184 | + ): |
| 185 | + # Random task sampling |
| 186 | + new_task = self.random_task_generator.sample() |
| 187 | + else: |
| 188 | + # ALP-based task sampling |
| 189 | + |
| 190 | + # 1 - Retrieve the mean ALP value of each Gaussian in the GMM |
| 191 | + self.alp_means = [] |
| 192 | + for pos, _, w in zip( |
| 193 | + self.gmm.means_, self.gmm.covariances_, self.gmm.weights_ |
| 194 | + ): |
| 195 | + self.alp_means.append(pos[-1]) |
| 196 | + |
| 197 | + # 2 - Sample Gaussian proportionally to its mean ALP |
| 198 | + idx = proportional_choice(self.alp_means, eps=0.0) |
| 199 | + |
| 200 | + # 3 - Sample task in Gaussian, without forgetting to remove ALP dimension |
| 201 | + new_task = np.random.multivariate_normal( |
| 202 | + self.gmm.means_[idx], self.gmm.covariances_[idx] |
| 203 | + )[:-1] |
| 204 | + new_task = np.clip(new_task, self.mins, self.maxs).astype(np.float32) |
| 205 | + |
| 206 | + return new_task |
| 207 | + |
| 208 | + def dump(self, dump_dict): |
| 209 | + dump_dict.update(self.bk) |
| 210 | + return dump_dict |
0 commit comments