Skip to content
forked from jannerm/mbpo

Code for the paper "When to Trust Your Model: Model-Based Policy Optimization"

License

Notifications You must be signed in to change notification settings

ColinQiyangLi/mbpo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Model-Based Policy Optimization

Code to reproduce the experiments in When to Trust Your Model: Model-Based Policy Optimization.

Installation

  1. Install MuJoCo 1.50 at ~/.mujoco/mjpro150 and copy your license key to ~/.mujoco/mjkey.txt
  2. Clone mbpo
git clone --recursive https://github.com/jannerm/mbpo.git
  1. Create a conda environment and install mbpo
cd mbpo
conda env create -f environment/gpu-env.yml
conda activate mbpo
pip install -e viskit
pip install -e .

Usage

Configuration files can be found in examples/config/.

mbpo run_local examples.development --config=examples.config.halfcheetah.0 --gpus=1 --trial-gpus=1

Currently only running locally is supported.

New environments

To run on a different environment, you can modify the provided template. You will also need to provide the termination function for the environment in mbpo/static. If you name the file the lowercase version of the environment name, it will be found automatically. See hopper.py for an example.

Logging

This codebase contains viskit as a submodule. You can view saved runs with:

viskit ~/ray_mbpo --port 6008

assuming you used the default log_dir.

Hyperparameters

The rollout length schedule is defined by a length-4 list in a config file. The format is [start_epoch, end_epoch, start_length, end_length], so the following:

'rollout_schedule': [20, 100, 1, 5] 

corresponds to a model rollout length linearly increasing from 1 to 5 over epochs 20 to 100.

If you want to speed up training in terms of wall clock time (but possibly make the runs less sample-efficient), you can set a timeout for model training (max_model_t, in seconds) or train the model less frequently (every model_train_freq steps).

Comparing to MBPO

If you would like to compare to MBPO but do not have the resources to re-run all experiments, the learning curves found in Figure 2 of the paper (plus on the Humanoid environment) are available in this shared folder. See plot.py for an example of how to read the pickle files with the results.

Reference

If you find this code useful in an academic setting, please cite:

@article{janner2019mbpo,
  author = {Michael Janner and Justin Fu and Marvin Zhang and Sergey Levine},
  title = {When to Trust Your Model: Model-Based Policy Optimization},
  journal = {arXiv preprint arXiv:1906.08253},
  year = {2019}
}

Acknowledgments

The underlying soft actor-critic implementation in MBPO comes from Tuomas Haarnoja and Kristian Hartikainen's softlearning codebase. The modeling code is a slightly modified version of Kurtland Chua's PETS implementation.

About

Code for the paper "When to Trust Your Model: Model-Based Policy Optimization"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%