-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
210 lines (151 loc) · 7.28 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
ACT = F.relu
class MLPLayer(nn.Module):
def __init__(self, dim_in=None, dim_out=None, bn=False, act=True, dropout=0., bias=True):
super(MLPLayer, self).__init__()
self.act=act
layer = [nn.Linear(dim_in, dim_out, bias=bias)]
if bn:
bn_ = nn.BatchNorm1d(dim_out)
layer.append(bn_)
self.layer = nn.Sequential(*layer)
def forward(self, x):
x=self.layer(x)
if self.act:
x = ACT((x))
return x
class CNN(nn.Module):
def __init__(self, bn=False, affine=True, num_classes=10, bias=False, kernel_size=3, inp_noise=0, VIB=False):
super(CNN, self).__init__()
self.VIB = VIB
nhiddens = [200,400,600,800]
self.inp_noise = inp_noise
self.conv1 = nn.Conv2d(3, nhiddens[0], kernel_size, 1, bias=bias)
self.bn1 = nn.BatchNorm2d(nhiddens[0], affine=affine) if bn else nn.Sequential()
self.conv2 = nn.Conv2d(nhiddens[0], nhiddens[1], 3, 1, bias=bias)
self.bn2 = nn.BatchNorm2d(nhiddens[1], affine=affine)if bn else nn.Sequential()
self.conv3 = nn.Conv2d(nhiddens[1], nhiddens[2], 3, 1, bias=bias)
self.bn3 = nn.BatchNorm2d(nhiddens[2], affine=affine) if bn else nn.Sequential()
self.conv4 = nn.Conv2d(nhiddens[2], nhiddens[3], 3, 1, bias=bias)
self.bn4 = nn.BatchNorm2d(nhiddens[3], affine=affine) if bn else nn.Sequential()
nb_filters_cur = nhiddens[3]
if self.VIB:
self.mn = MLPLayer(nb_filters_cur, 256, 'none', act=False, bias=bias)
self.logvar = MLPLayer(nb_filters_cur, 256, 'none', act=False, bias=bias)
nb_filters_cur = 256
self.fc = MLPLayer(nb_filters_cur, num_classes, 'none', act=False, bias=bias)
def forward(self, x, ret_hid=False, train=True):
if x.size()[1]==1: # if MNIST is given, replicate 1 channel to make input have 3 channel
out = torch.ones(x.size(0), 3, x.size(2), x.size(3)).type('torch.cuda.FloatTensor')
x = out*x
if self.inp_noise>0 and train:
x = x + self.inp_noise*torch.randn_like(x)
h=self.conv1(x)
x = F.relu(self.bn1(h))
x = F.max_pool2d(x, 2, 2)
x=self.conv2(x)
x = F.relu(self.bn2(x))
x=self.conv3(x)
x = F.relu(self.bn3(x))
x = F.max_pool2d(x, 2, 2)
x=self.conv4(x)
x = F.relu(self.bn4(x))
# print(x.shape)
x = nn.AvgPool2d(*[x.size()[2]])(x)
x = x.view(x.size()[0], -1)
if self.VIB:
mn = self.mn(x)
logvar = self.logvar(x)
x = reparameterize(mn,logvar)
x = self.fc(x)
if ret_hid:
return x, h
elif self.VIB and train:
return out, mn, logvar
else:
return x
class resblock(nn.Module):
def __init__(self, depth, channels, stride=1, bn='', nresblocks=1.,affine=True, kernel_size=3, bias=True):
self.depth = depth
self. channels = channels
super(resblock, self).__init__()
self.bn1 = nn.BatchNorm2d(depth,affine=affine) if bn else nn.Sequential()
self.conv2 = (nn.Conv2d(depth, channels, kernel_size=kernel_size, stride=stride, padding=1, bias=bias))
self.bn2 = nn.BatchNorm2d(channels, affine=affine) if bn else nn.Sequential()
self.conv3 = nn.Conv2d(channels, channels, kernel_size=kernel_size, stride=1, padding=1, bias=bias)
self.shortcut = nn.Sequential()
if stride > 1 or depth!=channels:
layers = []
conv_layer = nn.Conv2d(depth, channels, kernel_size=1, stride=stride, padding=0, bias=bias)
layers += [conv_layer, nn.BatchNorm2d(channels,affine=affine) if bn else nn.Sequential()]
self.shortcut = nn.Sequential(*layers)
def forward(self, x):
out = ACT(self.bn1(x))
out = ACT(self.bn2(self.conv2(out)))
out = (self.conv3(out))
short = self.shortcut(x)
out += 1.*short
return out
class ResNet(nn.Module):
def __init__(self, depth=56, nb_filters=16, num_classes=10, bn=False, affine=True, kernel_size=3, inp_channels=3, k=1, pad_conv1=0, bias=False, inp_noise=0, VIB=False): # n=9->Resnet-56
super(ResNet, self).__init__()
self.inp_noise = inp_noise
self.VIB = VIB
nstage = 3
self.pre_clf=[]
assert ((depth-2)%6 ==0), 'resnet depth should be 6n+2'
n = int((depth-2)/6)
nfilters = [nb_filters, nb_filters*k, 2* nb_filters*k, 4* nb_filters*k, num_classes]
self.nfilters = nfilters
self.num_classes = num_classes
self.conv1 = (nn.Conv2d(inp_channels, nfilters[0], kernel_size=kernel_size, stride=1, padding=pad_conv1, bias=bias))
self.bn1 = nn.BatchNorm2d(nfilters[0], affine=affine) if bn else nn.Sequential()
nb_filters_prev = nb_filters_cur = nfilters[0]
for stage in range(nstage):
nb_filters_cur = nfilters[stage+1]
for i in range(n):
subsample = 1 if (i > 0 or stage == 0) else 2
layer = resblock(nb_filters_prev, nb_filters_cur, subsample, bn=bn, nresblocks = nstage*n, affine=affine, kernel_size=3, bias=bias)
self.pre_clf.append(layer)
nb_filters_prev = nb_filters_cur
self.pre_clf = nn.Sequential(*self.pre_clf)
if self.VIB:
self.mn = MLPLayer(nb_filters_cur, 256, 'none', act=False, bias=bias)
self.logvar = MLPLayer(nb_filters_cur, 256, 'none', act=False, bias=bias)
nb_filters_cur = 256
self.fc = MLPLayer(nb_filters_cur, nfilters[-1], 'none', act=False, bias=bias)
def forward(self, x, ret_hid=False, train=True):
if x.size()[1]==1: # if MNIST is given, replicate 1 channel to make input have 3 channel
out = torch.ones(x.size(0), 3, x.size(2), x.size(3)).type('torch.cuda.FloatTensor')
out = out*x
else:
out = x
if self.inp_noise>0 and train:
out = out + self.inp_noise*torch.randn_like(out)
hid = self.conv1(out)
out = self.bn1(hid)
out = self.pre_clf(out)
fc = torch.mean(out.view(out.size(0), out.size(1), -1), dim=2)
fc = fc.view(fc.size()[0], -1)
if self.VIB:
mn = self.mn(fc)
logvar = self.logvar(fc)
fc = reparameterize(mn,logvar)
out = self.fc((fc))
if ret_hid:
return out, hid
elif self.VIB and train:
return out, mn, logvar
else:
return out
# Resnet nomenclature: 6n+2 = 3x2xn + 2; 3 stages, each with n number of resblocks containing 2 conv layers each, and finally 2 non-res conv layers
def ResNet_model(bn=False, num_classes=10, depth=56, nb_filters=16, kernel_size=3, inp_channels=3, k=1, pad_conv1=0, affine=True, inp_noise=0, VIB=False):
return ResNet(depth=depth, nb_filters=nb_filters, num_classes=num_classes, bn=bn, kernel_size=kernel_size, \
inp_channels=inp_channels, k=k, pad_conv1=pad_conv1, affine=affine, inp_noise=inp_noise, VIB=VIB)
def reparameterize(mu, logvar):
std = torch.exp(0.5*logvar)
eps = torch.randn_like(std)
return mu + eps*std