-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathZetherVerifier.sol
393 lines (348 loc) · 20.7 KB
/
ZetherVerifier.sol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
// SPDX-License-Identifier: Apache License 2.0
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "./Utils.sol";
import "./InnerProductVerifier.sol";
contract ZetherVerifier {
using Utils for uint256;
using Utils for Utils.G1Point;
uint256 constant UNITY = 0x14a3074b02521e3b1ed9852e5028452693e87be4e910500c7ba9bbddb2f46edd; // primitive 2^28th root of unity modulo q.
uint256 constant TWO_INV = 0x183227397098d014dc2822db40c0ac2e9419f4243cdcb848a1f0fac9f8000001; // 2^{-1} modulo q
InnerProductVerifier ip;
uint256 public constant fee = 0; // set this to be the "transaction fee". can be any integer under MAX.
struct ZetherStatement {
Utils.G1Point[] CLn;
Utils.G1Point[] CRn;
Utils.G1Point[] C;
Utils.G1Point D;
Utils.G1Point[] y;
uint256 epoch;
Utils.G1Point u;
}
struct ZetherProof {
Utils.G1Point BA;
Utils.G1Point BS;
Utils.G1Point A;
Utils.G1Point B;
Utils.G1Point[] CLnG;
Utils.G1Point[] CRnG;
Utils.G1Point[] C_0G;
Utils.G1Point[] DG;
Utils.G1Point[] y_0G;
Utils.G1Point[] gG;
Utils.G1Point[] C_XG;
Utils.G1Point[] y_XG;
uint256[] f;
uint256 z_A;
Utils.G1Point T_1;
Utils.G1Point T_2;
uint256 tHat;
uint256 mu;
uint256 c;
uint256 s_sk;
uint256 s_r;
uint256 s_b;
uint256 s_tau;
InnerProductVerifier.InnerProductProof ipProof;
}
constructor(address _ip) {
ip = InnerProductVerifier(_ip);
}
function verifyTransfer(Utils.G1Point[] memory CLn, Utils.G1Point[] memory CRn, Utils.G1Point[] memory C, Utils.G1Point memory D, Utils.G1Point[] memory y, uint256 epoch, Utils.G1Point memory u, bytes memory proof) public view returns (bool) {
ZetherStatement memory statement;
statement.CLn = CLn; // do i need to allocate / set size?!
statement.CRn = CRn;
statement.C = C;
statement.D = D;
statement.y = y;
statement.epoch = epoch;
statement.u = u;
ZetherProof memory zetherProof = unserialize(proof);
return verify(statement, zetherProof);
}
struct ZetherAuxiliaries {
uint256 y;
uint256[64] ys;
uint256 z;
uint256[2] zs; // [z^2, z^3]
uint256[64] twoTimesZSquared;
uint256 zSum;
uint256 x;
uint256 t;
uint256 k;
Utils.G1Point tEval;
}
struct SigmaAuxiliaries {
uint256 c;
Utils.G1Point A_y;
Utils.G1Point A_D;
Utils.G1Point A_b;
Utils.G1Point A_X;
Utils.G1Point A_t;
Utils.G1Point gEpoch;
Utils.G1Point A_u;
}
struct AnonAuxiliaries {
uint256 m;
uint256 N;
uint256 v;
uint256 w;
uint256 vPow;
uint256 wPow;
uint256[2][] f; // could just allocate extra space in the proof?
uint256[2][] r; // each poly is an array of length N. evaluations of prods
Utils.G1Point temp;
Utils.G1Point CLnR;
Utils.G1Point CRnR;
Utils.G1Point[2][] CR;
Utils.G1Point[2][] yR;
Utils.G1Point C_XR;
Utils.G1Point y_XR;
Utils.G1Point gR;
Utils.G1Point DR;
}
struct IPAuxiliaries {
Utils.G1Point P;
Utils.G1Point u_x;
Utils.G1Point[] hPrimes;
Utils.G1Point hPrimeSum;
uint256 o;
}
function gSum() internal pure returns (Utils.G1Point memory) {
return Utils.G1Point(0x00715f13ea08d6b51bedcde3599d8e12163e090921309d5aafc9b5bfaadbcda0, 0x27aceab598af7bf3d16ca9d40fe186c489382c21bb9d22b19cb3af8b751b959f);
}
function verify(ZetherStatement memory statement, ZetherProof memory proof) internal view returns (bool) {
uint256 statementHash = uint256(keccak256(abi.encode(statement.CLn, statement.CRn, statement.C, statement.D, statement.y, statement.epoch))).mod();
AnonAuxiliaries memory anonAuxiliaries;
anonAuxiliaries.v = uint256(keccak256(abi.encode(statementHash, proof.BA, proof.BS, proof.A, proof.B))).mod();
anonAuxiliaries.w = uint256(keccak256(abi.encode(anonAuxiliaries.v, proof.CLnG, proof.CRnG, proof.C_0G, proof.DG, proof.y_0G, proof.gG, proof.C_XG, proof.y_XG))).mod();
anonAuxiliaries.m = proof.f.length / 2;
anonAuxiliaries.N = 1 << anonAuxiliaries.m;
anonAuxiliaries.f = new uint256[2][](2 * anonAuxiliaries.m);
for (uint256 k = 0; k < 2 * anonAuxiliaries.m; k++) {
anonAuxiliaries.f[k][1] = proof.f[k];
anonAuxiliaries.f[k][0] = anonAuxiliaries.w.sub(proof.f[k]); // is it wasteful to store / keep all these in memory?
}
for (uint256 k = 0; k < 2 * anonAuxiliaries.m; k++) {
anonAuxiliaries.temp = anonAuxiliaries.temp.add(ip.gs(k).mul(anonAuxiliaries.f[k][1]));
anonAuxiliaries.temp = anonAuxiliaries.temp.add(ip.hs(k).mul(anonAuxiliaries.f[k][1].mul(anonAuxiliaries.f[k][0])));
}
anonAuxiliaries.temp = anonAuxiliaries.temp.add(ip.hs(2 * anonAuxiliaries.m).mul(anonAuxiliaries.f[0][1].mul(anonAuxiliaries.f[anonAuxiliaries.m][1])).add(ip.hs(2 * anonAuxiliaries.m + 1).mul(anonAuxiliaries.f[0][0].mul(anonAuxiliaries.f[anonAuxiliaries.m][0]))));
require(proof.B.mul(anonAuxiliaries.w).add(proof.A).eq(anonAuxiliaries.temp.add(Utils.h().mul(proof.z_A))), "Recovery failure for B^w * A.");
anonAuxiliaries.r = assemblePolynomials(anonAuxiliaries.f);
anonAuxiliaries.CR = assembleConvolutions(anonAuxiliaries.r, statement.C);
anonAuxiliaries.yR = assembleConvolutions(anonAuxiliaries.r, statement.y);
for (uint256 i = 0; i < anonAuxiliaries.N; i++) {
anonAuxiliaries.CLnR = anonAuxiliaries.CLnR.add(statement.CLn[i].mul(anonAuxiliaries.r[i][0]));
anonAuxiliaries.CRnR = anonAuxiliaries.CRnR.add(statement.CRn[i].mul(anonAuxiliaries.r[i][0]));
}
anonAuxiliaries.vPow = 1;
for (uint256 i = 0; i < anonAuxiliaries.N; i++) {
anonAuxiliaries.C_XR = anonAuxiliaries.C_XR.add(anonAuxiliaries.CR[i / 2][i % 2].mul(anonAuxiliaries.vPow));
anonAuxiliaries.y_XR = anonAuxiliaries.y_XR.add(anonAuxiliaries.yR[i / 2][i % 2].mul(anonAuxiliaries.vPow));
if (i > 0) {
anonAuxiliaries.vPow = anonAuxiliaries.vPow.mul(anonAuxiliaries.v);
}
}
anonAuxiliaries.wPow = 1;
for (uint256 k = 0; k < anonAuxiliaries.m; k++) {
anonAuxiliaries.CLnR = anonAuxiliaries.CLnR.add(proof.CLnG[k].mul(anonAuxiliaries.wPow.neg()));
anonAuxiliaries.CRnR = anonAuxiliaries.CRnR.add(proof.CRnG[k].mul(anonAuxiliaries.wPow.neg()));
anonAuxiliaries.CR[0][0] = anonAuxiliaries.CR[0][0].add(proof.C_0G[k].mul(anonAuxiliaries.wPow.neg()));
anonAuxiliaries.DR = anonAuxiliaries.DR.add(proof.DG[k].mul(anonAuxiliaries.wPow.neg()));
anonAuxiliaries.yR[0][0] = anonAuxiliaries.yR[0][0].add(proof.y_0G[k].mul(anonAuxiliaries.wPow.neg()));
anonAuxiliaries.gR = anonAuxiliaries.gR.add(proof.gG[k].mul(anonAuxiliaries.wPow.neg()));
anonAuxiliaries.C_XR = anonAuxiliaries.C_XR.add(proof.C_XG[k].mul(anonAuxiliaries.wPow.neg()));
anonAuxiliaries.y_XR = anonAuxiliaries.y_XR.add(proof.y_XG[k].mul(anonAuxiliaries.wPow.neg()));
anonAuxiliaries.wPow = anonAuxiliaries.wPow.mul(anonAuxiliaries.w);
}
anonAuxiliaries.DR = anonAuxiliaries.DR.add(statement.D.mul(anonAuxiliaries.wPow));
anonAuxiliaries.gR = anonAuxiliaries.gR.add(Utils.g().mul(anonAuxiliaries.wPow));
anonAuxiliaries.C_XR = anonAuxiliaries.C_XR.add(Utils.g().mul(fee.mul(anonAuxiliaries.wPow))); // this line is new
ZetherAuxiliaries memory zetherAuxiliaries;
zetherAuxiliaries.y = uint256(keccak256(abi.encode(anonAuxiliaries.w))).mod();
zetherAuxiliaries.ys[0] = 1;
zetherAuxiliaries.k = 1;
for (uint256 i = 1; i < 64; i++) {
zetherAuxiliaries.ys[i] = zetherAuxiliaries.ys[i - 1].mul(zetherAuxiliaries.y);
zetherAuxiliaries.k = zetherAuxiliaries.k.add(zetherAuxiliaries.ys[i]);
}
zetherAuxiliaries.z = uint256(keccak256(abi.encode(zetherAuxiliaries.y))).mod();
zetherAuxiliaries.zs[0] = zetherAuxiliaries.z.mul(zetherAuxiliaries.z);
zetherAuxiliaries.zs[1] = zetherAuxiliaries.zs[0].mul(zetherAuxiliaries.z);
zetherAuxiliaries.zSum = zetherAuxiliaries.zs[0].add(zetherAuxiliaries.zs[1]).mul(zetherAuxiliaries.z);
zetherAuxiliaries.k = zetherAuxiliaries.k.mul(zetherAuxiliaries.z.sub(zetherAuxiliaries.zs[0])).sub(zetherAuxiliaries.zSum.mul(1 << 32).sub(zetherAuxiliaries.zSum));
zetherAuxiliaries.t = proof.tHat.sub(zetherAuxiliaries.k); // t = tHat - delta(y, z)
for (uint256 i = 0; i < 32; i++) {
zetherAuxiliaries.twoTimesZSquared[i] = zetherAuxiliaries.zs[0].mul(1 << i);
zetherAuxiliaries.twoTimesZSquared[i + 32] = zetherAuxiliaries.zs[1].mul(1 << i);
}
zetherAuxiliaries.x = uint256(keccak256(abi.encode(zetherAuxiliaries.z, proof.T_1, proof.T_2))).mod();
zetherAuxiliaries.tEval = proof.T_1.mul(zetherAuxiliaries.x).add(proof.T_2.mul(zetherAuxiliaries.x.mul(zetherAuxiliaries.x))); // replace with "commit"?
SigmaAuxiliaries memory sigmaAuxiliaries;
sigmaAuxiliaries.A_y = anonAuxiliaries.gR.mul(proof.s_sk).add(anonAuxiliaries.yR[0][0].mul(proof.c.neg()));
sigmaAuxiliaries.A_D = Utils.g().mul(proof.s_r).add(statement.D.mul(proof.c.neg())); // add(mul(anonAuxiliaries.gR, proof.s_r), mul(anonAuxiliaries.DR, proof.c.neg()));
sigmaAuxiliaries.A_b = Utils.g().mul(proof.s_b).add(anonAuxiliaries.DR.mul(zetherAuxiliaries.zs[0].neg()).add(anonAuxiliaries.CRnR.mul(zetherAuxiliaries.zs[1])).mul(proof.s_sk).add(anonAuxiliaries.CR[0][0].add(Utils.g().mul(fee.mul(anonAuxiliaries.wPow))).mul(zetherAuxiliaries.zs[0].neg()).add(anonAuxiliaries.CLnR.mul(zetherAuxiliaries.zs[1])).mul(proof.c.neg())));
sigmaAuxiliaries.A_X = anonAuxiliaries.y_XR.mul(proof.s_r).add(anonAuxiliaries.C_XR.mul(proof.c.neg()));
sigmaAuxiliaries.A_t = Utils.g().mul(zetherAuxiliaries.t).add(zetherAuxiliaries.tEval.neg()).mul(proof.c.mul(anonAuxiliaries.wPow)).add(Utils.h().mul(proof.s_tau)).add(Utils.g().mul(proof.s_b.neg()));
sigmaAuxiliaries.gEpoch = Utils.mapInto("Zether", statement.epoch);
sigmaAuxiliaries.A_u = sigmaAuxiliaries.gEpoch.mul(proof.s_sk).add(statement.u.mul(proof.c.neg()));
sigmaAuxiliaries.c = uint256(keccak256(abi.encode(zetherAuxiliaries.x, sigmaAuxiliaries.A_y, sigmaAuxiliaries.A_D, sigmaAuxiliaries.A_b, sigmaAuxiliaries.A_X, sigmaAuxiliaries.A_t, sigmaAuxiliaries.A_u))).mod();
require(sigmaAuxiliaries.c == proof.c, "Sigma protocol challenge equality failure.");
IPAuxiliaries memory ipAuxiliaries;
ipAuxiliaries.o = uint256(keccak256(abi.encode(sigmaAuxiliaries.c))).mod();
ipAuxiliaries.u_x = Utils.h().mul(ipAuxiliaries.o);
ipAuxiliaries.hPrimes = new Utils.G1Point[](64);
for (uint256 i = 0; i < 64; i++) {
ipAuxiliaries.hPrimes[i] = ip.hs(i).mul(zetherAuxiliaries.ys[i].inv());
ipAuxiliaries.hPrimeSum = ipAuxiliaries.hPrimeSum.add(ipAuxiliaries.hPrimes[i].mul(zetherAuxiliaries.ys[i].mul(zetherAuxiliaries.z).add(zetherAuxiliaries.twoTimesZSquared[i])));
}
ipAuxiliaries.P = proof.BA.add(proof.BS.mul(zetherAuxiliaries.x)).add(gSum().mul(zetherAuxiliaries.z.neg())).add(ipAuxiliaries.hPrimeSum);
ipAuxiliaries.P = ipAuxiliaries.P.add(Utils.h().mul(proof.mu.neg()));
ipAuxiliaries.P = ipAuxiliaries.P.add(ipAuxiliaries.u_x.mul(proof.tHat));
require(ip.verifyInnerProduct(ipAuxiliaries.hPrimes, ipAuxiliaries.u_x, ipAuxiliaries.P, proof.ipProof, ipAuxiliaries.o), "Inner product proof verification failed.");
return true;
}
function assemblePolynomials(uint256[2][] memory f) internal pure returns (uint256[2][] memory result) {
// f is a 2m-by-2 array... containing the f's and x - f's, twice (i.e., concatenated).
// output contains two "rows", each of length N.
uint256 m = f.length / 2;
uint256 N = 1 << m;
result = new uint256[2][](N);
for (uint256 j = 0; j < 2; j++) {
result[0][j] = 1;
for (uint256 k = 0; k < m; k++) {
for (uint256 i = 0; i < N; i += 1 << m - k) {
result[i + (1 << m - 1 - k)][j] = result[i][j].mul(f[j * m + m - 1 - k][1]);
result[i][j] = result[i][j].mul(f[j * m + m - 1 - k][0]);
}
}
}
}
function assembleConvolutions(uint256[2][] memory exponent, Utils.G1Point[] memory base) internal view returns (Utils.G1Point[2][] memory result) {
// exponent is two "rows" (actually columns).
// will return two rows, each of half the length of the exponents;
// namely, we will return the Hadamards of "base" by the even circular shifts of "exponent"'s rows.
uint256 size = exponent.length;
uint256 half = size / 2;
result = new Utils.G1Point[2][](half); // assuming that this is necessary even when return is declared up top
uint256 omega = UNITY.exp((1 << 28) / size); // wasteful: using exp for all 256-bits, though we only need 28 (at most!)
uint256 omega_inv = omega.mul(omega).inv(); // also square it. inverse fft will be half as big
uint256[] memory omegas = new uint256[](half);
// TODO edge case when there are no decoys - size = 2
// The inverses array is only used for the fft call with inverse=true however since the inverse_fft array has
// size=1 the fft call returns the input array (without any further processing). Maybe size=2 should be treated
// separately (and possibly simplified).
uint256 halfHalf = half == 1 ? 1 : half / 2;
uint256[] memory inverses = new uint256[](halfHalf); // if it's not an integer, will this still work nicely?
omegas[0] = 1;
inverses[0] = 1;
for (uint256 i = 1; i < half; i++) omegas[i] = omegas[i - 1].mul(omega);
for (uint256 i = 1; i < halfHalf; i++) inverses[i] = inverses[i - 1].mul(omega_inv);
Utils.G1Point[] memory base_fft = fft(base, omegas, false); // could precompute UNITY.inv(), but... have to exp it anyway
uint256[] memory exponent_fft = new uint256[](size);
for (uint256 j = 0; j < 2; j++) {
for (uint256 i = 0; i < size; i++) exponent_fft[i] = exponent[(size - i) % size][j]; // convolutional flip plus copy
exponent_fft = fft(exponent_fft, omegas);
Utils.G1Point[] memory inverse_fft = new Utils.G1Point[](half);
for (uint256 i = 0; i < half; i++) { // break up into two statements for ease of reading
inverse_fft[i] = inverse_fft[i].add(base_fft[i].mul(exponent_fft[i].mul(TWO_INV)));
inverse_fft[i] = inverse_fft[i].add(base_fft[i + half].mul(exponent_fft[i + half].mul(TWO_INV)));
}
inverse_fft = fft(inverse_fft, inverses, true); // square, because half as big.
for (uint256 i = 0; i < half; i++) result[i][j] = inverse_fft[i];
}
}
function fft(Utils.G1Point[] memory input, uint256[] memory omegas, bool inverse) internal view returns (Utils.G1Point[] memory result) {
uint256 size = input.length;
if (size == 1) return input;
require(size % 2 == 0, "Input size is not a power of 2!");
Utils.G1Point[] memory even = fft(extract(input, 0), extract(omegas, 0), inverse);
Utils.G1Point[] memory odd = fft(extract(input, 1), extract(omegas, 0), inverse);
result = new Utils.G1Point[](size);
for (uint256 i = 0; i < size / 2; i++) {
Utils.G1Point memory temp = odd[i].mul(omegas[i]);
result[i] = even[i].add(temp);
result[i + size / 2] = even[i].add(temp.neg());
if (inverse) { // could probably "delay" the successive multiplications by 2 up the recursion.
result[i] = result[i].mul(TWO_INV);
result[i + size / 2] = result[i + size / 2].mul(TWO_INV);
}
}
}
function extract(Utils.G1Point[] memory input, uint256 parity) internal pure returns (Utils.G1Point[] memory result) {
result = new Utils.G1Point[](input.length / 2);
for (uint256 i = 0; i < input.length / 2; i++) {
result[i] = input[2 * i + parity];
}
}
function fft(uint256[] memory input, uint256[] memory omegas) internal view returns (uint256[] memory result) {
uint256 size = input.length;
if (size == 1) return input;
require(size % 2 == 0, "Input size is not a power of 2!");
uint256[] memory even = fft(extract(input, 0), extract(omegas, 0));
uint256[] memory odd = fft(extract(input, 1), extract(omegas, 0));
result = new uint256[](size);
for (uint256 i = 0; i < size / 2; i++) {
uint256 temp = odd[i].mul(omegas[i]);
result[i] = even[i].add(temp);
result[i + size / 2] = even[i].sub(temp);
}
}
function extract(uint256[] memory input, uint256 parity) internal pure returns (uint256[] memory result) {
result = new uint256[](input.length / 2);
for (uint256 i = 0; i < input.length / 2; i++) {
result[i] = input[2 * i + parity];
}
}
function unserialize(bytes memory arr) internal pure returns (ZetherProof memory proof) {
proof.BA = Utils.G1Point(Utils.slice(arr, 0), Utils.slice(arr, 32));
proof.BS = Utils.G1Point(Utils.slice(arr, 64), Utils.slice(arr, 96));
proof.A = Utils.G1Point(Utils.slice(arr, 128), Utils.slice(arr, 160));
proof.B = Utils.G1Point(Utils.slice(arr, 192), Utils.slice(arr, 224));
uint256 m = (arr.length - 1472) / 576;
proof.CLnG = new Utils.G1Point[](m);
proof.CRnG = new Utils.G1Point[](m);
proof.C_0G = new Utils.G1Point[](m);
proof.DG = new Utils.G1Point[](m);
proof.y_0G = new Utils.G1Point[](m);
proof.gG = new Utils.G1Point[](m);
proof.C_XG = new Utils.G1Point[](m);
proof.y_XG = new Utils.G1Point[](m);
proof.f = new uint256[](2 * m);
for (uint256 k = 0; k < m; k++) {
proof.CLnG[k] = Utils.G1Point(Utils.slice(arr, 256 + k * 64), Utils.slice(arr, 288 + k * 64));
proof.CRnG[k] = Utils.G1Point(Utils.slice(arr, 256 + (m + k) * 64), Utils.slice(arr, 288 + (m + k) * 64));
proof.C_0G[k] = Utils.G1Point(Utils.slice(arr, 256 + m * 128 + k * 64), Utils.slice(arr, 288 + m * 128 + k * 64));
proof.DG[k] = Utils.G1Point(Utils.slice(arr, 256 + m * 192 + k * 64), Utils.slice(arr, 288 + m * 192 + k * 64));
proof.y_0G[k] = Utils.G1Point(Utils.slice(arr, 256 + m * 256 + k * 64), Utils.slice(arr, 288 + m * 256 + k * 64));
proof.gG[k] = Utils.G1Point(Utils.slice(arr, 256 + m * 320 + k * 64), Utils.slice(arr, 288 + m * 320 + k * 64));
proof.C_XG[k] = Utils.G1Point(Utils.slice(arr, 256 + m * 384 + k * 64), Utils.slice(arr, 288 + m * 384 + k * 64));
proof.y_XG[k] = Utils.G1Point(Utils.slice(arr, 256 + m * 448 + k * 64), Utils.slice(arr, 288 + m * 448 + k * 64));
proof.f[k] = uint256(Utils.slice(arr, 256 + m * 512 + k * 32));
proof.f[k + m] = uint256(Utils.slice(arr, 256 + m * 544 + k * 32));
}
uint256 starting = m * 576;
proof.z_A = uint256(Utils.slice(arr, 256 + starting));
proof.T_1 = Utils.G1Point(Utils.slice(arr, 288 + starting), Utils.slice(arr, 320 + starting));
proof.T_2 = Utils.G1Point(Utils.slice(arr, 352 + starting), Utils.slice(arr, 384 + starting));
proof.tHat = uint256(Utils.slice(arr, 416 + starting));
proof.mu = uint256(Utils.slice(arr, 448 + starting));
proof.c = uint256(Utils.slice(arr, 480 + starting));
proof.s_sk = uint256(Utils.slice(arr, 512 + starting));
proof.s_r = uint256(Utils.slice(arr, 544 + starting));
proof.s_b = uint256(Utils.slice(arr, 576 + starting));
proof.s_tau = uint256(Utils.slice(arr, 608 + starting));
InnerProductVerifier.InnerProductProof memory ipProof;
ipProof.L = new Utils.G1Point[](6);
ipProof.R = new Utils.G1Point[](6);
for (uint256 i = 0; i < 6; i++) { // 2^6 = 64.
ipProof.L[i] = Utils.G1Point(Utils.slice(arr, 640 + starting + i * 64), Utils.slice(arr, 672 + starting + i * 64));
ipProof.R[i] = Utils.G1Point(Utils.slice(arr, 640 + starting + (6 + i) * 64), Utils.slice(arr, 672 + starting + (6 + i) * 64));
}
ipProof.a = uint256(Utils.slice(arr, 640 + starting + 6 * 128));
ipProof.b = uint256(Utils.slice(arr, 672 + starting + 6 * 128));
proof.ipProof = ipProof;
return proof;
}
}