forked from PaddlePaddle/FastDeploy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
clip.cc
59 lines (49 loc) · 1.84 KB
/
clip.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/function/clip.h"
#include <algorithm>
namespace fastdeploy {
namespace function {
template <typename T> class ClipFunctor {
public:
explicit ClipFunctor(const T min, const T max) : min_(min), max_(max) {}
T operator()(const T x) const {
return x < min_ ? min_ : x > max_ ? max_ : x;
}
private:
T min_;
T max_;
};
template <typename T>
void ClipKernel(const FDTensor& x, double min, double max, FDTensor* out) {
T max_ = static_cast<T>(max);
T min_ = static_cast<T>(min);
FDASSERT(min_ < max_,
"max should be greater than or equal to min. But received min = %f, "
"max = %f",
static_cast<float>(min_), static_cast<float>(max_));
FDTensor tmp;
tmp.Allocate(x.Shape(), x.Dtype());
const T* x_data = reinterpret_cast<const T*>(x.Data());
int64_t numel = x.Numel();
T* out_data = reinterpret_cast<T*>(tmp.Data());
std::transform(x_data, x_data + numel, out_data, ClipFunctor<T>(min_, max_));
*out = std::move(tmp);
}
void Clip(const FDTensor& x, double min, double max, FDTensor* out) {
FD_VISIT_INT_FLOAT_TYPES(x.dtype, "ClipKernel",
([&] { ClipKernel<data_t>(x, min, max, out); }));
}
} // namespace function
} // namespace fastdeploy