forked from leap71/PicoGK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
PicoGK_Voxels.cs
352 lines (325 loc) · 14.9 KB
/
PicoGK_Voxels.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
//
// SPDX-License-Identifier: Apache-2.0
//
// PicoGK ("peacock") is a compact software kernel for computational geometry,
// specifically for use in Computational Engineering Models (CEM).
//
// For more information, please visit https://picogk.org
//
// PicoGK is developed and maintained by LEAP 71 - © 2023 by LEAP 71
// https://leap71.com
//
// Computational Engineering will profoundly change our physical world in the
// years ahead. Thank you for being part of the journey.
//
// We have developed this library to be used widely, for both commercial and
// non-commercial projects alike. Therefore, we have released it under a
// permissive open-source license.
//
// The foundation of PicoGK is a thin layer on top of the powerful open-source
// OpenVDB project, which in turn uses many other Free and Open Source Software
// libraries. We are grateful to be able to stand on the shoulders of giants.
//
// LEAP 71 licenses this file to you under the Apache License, Version 2.0
// (the "License"); you may not use this file except in compliance with the
// License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, THE SOFTWARE IS
// PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED.
//
// See the License for the specific language governing permissions and
// limitations under the License.
//
using System.Diagnostics;
using System.Numerics;
using System.Runtime.InteropServices;
namespace PicoGK
{
/// <summary>
/// Function signature for signed distance implicts
/// </summary>
public interface IImplicit
{
/// <summary>
/// Return the signed distance to the iso surface
/// </summary>
/// <param name="vec">Real world point to sample</param>
/// <returns>
/// Distance to the Iso surface in real world values
/// 0.0 is at the surface
/// Negative values indicate the inside of the object
/// Positive values indicate the outside of the object
/// </returns>
public abstract float fSignedDistance(in Vector3 vec);
}
public partial class Voxels
{
/// <summary>
/// Default constructor, builds a new empty voxel field
/// </summary>
public Voxels()
{
m_hThis = _hCreate();
Debug.Assert(m_hThis != IntPtr.Zero);
}
/// <summary>
/// Copy constructor, create a duplicate
/// of the supplied voxel field
/// </summary>
/// <param name="oSource">Source to copy from</param>
public Voxels(in Voxels voxSource)
{
m_hThis = _hCreateCopy(voxSource.m_hThis);
Debug.Assert(m_hThis != IntPtr.Zero);
}
/// <summary>
/// Creates a new voxel field and renders it using the
/// implicit function specified
/// </summary>
/// <param name="oImplicit">Object producing a signed distance field</param>
public Voxels( in IImplicit xImplicit,
in BBox3 oBounds) : this()
{
RenderImplicit(xImplicit, oBounds);
}
/// <summary>
/// Creates a new voxel field form a mesh
/// </summary>
/// <param name="msh">The mesh that is rendered into the voxels</param>
public Voxels(in Mesh msh) : this()
{
RenderMesh(msh);
}
/// <summary>
/// Creates a new voxel field from a lattice
/// </summary>
/// <param name="lat">The lattice used</param>
public Voxels(in Lattice lat) : this()
{
RenderLattice(lat);
}
/// <summary>
/// Return the current voxel field as a mesh
/// </summary>
/// <returns>The meshed result of the voxel field</returns>
public Mesh mshAsMesh()
{
return new Mesh(this);
}
/// <summary>
/// Performs a boolean union between two voxel fields
/// Our voxelfield will have all the voxels set that the operands also has set
/// </summary>
/// <param name="voxOperand">Voxels to add to our field</param>
public void BoolAdd(in Voxels voxOperand)
=> _BoolAdd(m_hThis, voxOperand.m_hThis);
/// <summary>
/// Performs a boolean difference between the two voxel fields
/// Our voxel field's voxel will have all the matter removed
/// that is set in the operand
/// </summary>
/// <param name="voxOperand">Voxels to remove from our field</param>
public void BoolSubtract(in Voxels voxOperand)
=> _BoolSubtract(m_hThis, voxOperand.m_hThis);
/// <summary>
/// Performs a boolean intersection between two voxel fields.
/// Our fields will have all voxels removed, that are not
/// inside the Operand's field
/// </summary>
/// <param name="voxOperand">Voxels masking our voxel field</param>
public void BoolIntersect(in Voxels voxOperand)
=> _BoolIntersect(m_hThis, voxOperand.m_hThis);
/// <summary>
/// Performs a smooth boolean union, with the objects merged
/// into each other over the specified distance
/// </summary>
/// <param name="voxOperand">The voxels to add to ours</param>
/// <param name="fDist">The distance in MM over which to merge</param>
public void BoolAddSmoothVx(in Voxels voxOperand, float fDist)
=> _BoolAddSmooth(m_hThis, voxOperand.m_hThis, fDist);
/// <summary>
/// Performs a smooth boolean union, with the objects merged
/// into each other over the specified distance
/// </summary>
/// <param name="voxOperand">The voxels to add to ours</param>
/// <param name="fDistMM">The distance in millimeters over which to merge</param>
public void BoolAddSmooth(in Voxels voxOperand, float fDistMM)
=> _BoolAddSmooth( m_hThis, voxOperand.m_hThis, fDistMM);
/// <summary>
/// Offsets the voxel field by the specified distance.
/// The surface of the voxel field is moved outward or inward
/// Outward is positive, inward is negative
/// </summary>
/// <param name="fDistMM">The distance to move the surface outward (positive) or inward (negative) in millimeters</param>
public void Offset(float fDistMM)
=> _Offset(m_hThis, fDistMM);
/// <summary>
/// Offsets the voxel field twice, but the specified distances
/// Outwards is positive, inwards is negative
/// </summary>
/// <param name="fDist1MM">First offset distance in mm</param>
/// <param name="fDist2MM">Second distance in mm</param>
public void DoubleOffset( float fDist1MM,
float fDist2MM)
=> _DoubleOffset(m_hThis, fDist1MM, fDist2MM);
/// <summary>
/// Offsets the voxel field three times by the specified distance.
/// First it offsets inwards by the specified distance
/// Then it offsets twice the distance outwards
/// Then it offsets the distance inwards again
/// This is useful to smoothen a voxel field. By offsetting inwards
/// you eliminate all convex detail below a certain threshold
/// by offsetting outwards, you eliminated concave detail below a threshold
/// by offsetting inwards again, you are back to the size of the object
/// that you started with, but without the detail
/// Usually call this with a positive number, although you can reverse
/// the operations by using a negative number
/// </summary>
/// <param name="fDistMM">Distance to move (in mm)</param>
public void TripleOffset( float fDistMM)
=> _TripleOffset(m_hThis, fDistMM);
/// <summary>
/// Renders a mesh into the voxel field, combining it with
/// the existing content
/// </summary>
/// <param name="msh">The mesh to render (needs to be a closed surface)</param>
public void RenderMesh(in Mesh msh)
=> _RenderMesh(m_hThis, msh.m_hThis);
/// <summary>
/// Render an implicit signed distance function into the voxels
/// overwriting the existing content with the voxels where the implicit
/// function returns <= 0
/// You will often want to use IntersectImplicit instead
/// </summary>
/// <param name="xImp">Implicit object with signed distance function</param>
/// <param name="oBounds">Bounding box in which to render the implicit</param>
public void RenderImplicit( in IImplicit xImp,
in BBox3 oBounds)
=> _RenderImplicit(m_hThis, in oBounds, xImp.fSignedDistance);
/// <summary>
/// Render an implicit signed distance function into the voxels
/// but using the existing voxels as a mask.
/// If the voxel field contains a voxel at a given position, the voxel
/// will be set to true if the signed distance function returns <= 0
/// and false if the signed distance function returns > 0
/// So a voxel field, containting a filled sphere, will contain a
/// Gyroid Sphere, if used with a Gyroid implict
/// </summary>
/// <param name="xImp">Implicit object with signed distance function<</param>
public void IntersectImplicit(in IImplicit xImp)
=> _IntersectImplicit(m_hThis, xImp.fSignedDistance);
/// <summary>
/// Renders a lattice into the voxel field, combining it with
/// the existing content
/// </summary>
/// <param name="lat">The lattice to render</param>
public void RenderLattice(in Lattice lat)
=> _RenderLattice(m_hThis, lat.m_hThis);
/// <summary>
/// Projects the slices at the start Z position upwards or downwards,
/// until it reaches the end Z position.
/// </summary>
/// <param name="nStartZMM">Start voxel slice in mm</param>
/// <param name="nEndZMM">End voxel slice in mm</param>
public void ProjectZSlice( float fStartZMM,
float fEndZMM)
=> _ProjectZSlice( m_hThis, fStartZMM, fEndZMM);
/// <summary>
/// Returns true if the voxel fields contain the same content
/// </summary>
/// <param name="voxOther">Voxels to compare to</param>
/// <returns></returns>
public bool bIsEqual(in Voxels voxOther)
=> _bIsEqual(m_hThis, voxOther.m_hThis);
/// <summary>
/// This function evaluates the entire voxel field and returns
/// the volume of all voxels in cubic millimeters and the Bounding Box
/// in real world coordinates
/// Note this function is potentially slow, as it needs to traverse the
/// entire voxel field
/// </summary>
/// <param name="fVolumeCubicMM">Cubic MMs of volume filled with voxels</param>
/// <param name="oBBox">The real world bounding box of the voxels</param>
public void CalculateProperties(out float fVolumeCubicMM,
out BBox3 oBBox)
{
oBBox = new();
_CalculateProperties(m_hThis, out fVolumeCubicMM, ref oBBox);
}
/// <summary>
/// Returns the closest point from the search point on the surface
/// of the voxel field
/// </summary>
/// <param name="vecSearch">Search position</param>
/// <param name="vecSurfacePoint">Point on the surface</param>
/// <returns>True if point is found, false if field is empty</returns>
public bool bClosestPointOnSurface( in Vector3 vecSearch,
out Vector3 vecSurfacePoint)
{
vecSurfacePoint = new();
return _bClosestPointOnSurface( m_hThis,
in vecSearch,
ref vecSurfacePoint);
}
/// <summary>
/// Casts a ray to the surface of a voxel field and finds the
/// the point on the surface where the ray intersects
/// </summary>
/// <param name="vecSearch">Search point</param>
/// <param name="vecDirection">Direction to search in</param>
/// <param name="vecSurfacePoint">Point on the surface</param>
/// <returns>True, point found. False, no surface in this direction</returns>
public bool bRayCastToSurface( in Vector3 vecSearch,
in Vector3 vecDirection,
out Vector3 vecSurfacePoint)
{
vecSurfacePoint = new();
return _bRayCastToSurface( m_hThis,
in vecSearch,
in vecDirection,
ref vecSurfacePoint);
}
/// <summary>
/// Returns the dimensions of the voxel field in discrete voxels
/// </summary>
/// <param name="nXSize">Size in x direction in voxels</param>
/// <param name="nYSize">Size in y direction in voxels</param>
/// <param name="nZSize">Size in z direction in voxels</param>
public void GetVoxelDimensions( out int nXSize,
out int nYSize,
out int nZSize)
{
_GetVoxelDimensions( m_hThis,
out nXSize,
out nYSize,
out nZSize);
}
/// <summary>
/// Returns a signed distance-field-encoded slice of the voxel field
/// To use it, use GetVoxelDimensions to find out the size of the voxel
/// field in voxel units. Then allocate a new grayscale image to copy
/// the data into, and pass it as a reference. Since GetVoxelDimensions
/// is potentially an "expensive" function, we are putting the burden
/// on you to allocate an image and don't create it for you. You can
/// also re-use the image if you want to save an entire image stack
/// </summary>
/// <param name="nZSlice">Slice to retrieve. 0 is at the bottom.</param>
/// <param name="img">Pre-allocated grayscale image to receive the values</param>
public void GetVoxelSlice( in int nZSlice,
ref ImageGrayScale img)
{
GCHandle oPinnedArray = GCHandle.Alloc(img.m_afValues, GCHandleType.Pinned);
try
{
IntPtr afBufferPtr = oPinnedArray.AddrOfPinnedObject();
_GetVoxelSlice(m_hThis, nZSlice, afBufferPtr);
}
finally
{
oPinnedArray.Free();
}
}
}
}