YOLT is an extension of the YOLO framework that can evaluate satellite images of arbitrary size, and runs at ~50 frames per second. Current applications include vechicle detection (cars, airplanes, boats), building detection, and airport detection.
The YOLT code alters a number of the files in src/*.c to allow further functionality. We also built a python wrapper around the C functions to improve flexibility. We utililize the default data format of YOLO, which places images and labels in different forlders. An example training data and image:
/data/images/train1.tif
/data/labels/train1.txt
Each line of the train1.txt file has the format
<object-class> <x> <y> <width> <height>
Where x, y, width, and height are relative to the image's width and height. Labels can be created with LabelImg, and converted to the appropriate format with the /yolt/scripts/convert.py script.
-
arXiv paper: You Only Look Twice: Rapid Multi-Scale Object Detection In Satellite Imagery
-
Blog2: You Only Look Twice (Part II) — Vehicle and Infrastructure Detection in Satellite Imagery
-
Blog4: Car Localization and Counting with Overhead Imagery, an Interactive Exploration
-
Blog5: The Satellite Utility Manifold; Object Detection Accuracy as a Function of Image Resolution
-
Install nvidia-docker
-
Build docker file
nvidia-docker build -t yolt yolt_container /path_to_yolt/docker
Commands should be executed within the docker file. To run the container (with name yolt_train0):
nvidia-docker run -it -v --name yolt_train0 yolt_container
python yolt2.py --help
python yolt2.py \
--mode compile
\# e.g. boats and planes
python ../scripts/yolt2.py \
--mode train \
--outname 3class_boat_plane \
--object_labels_str boat,boat_harbor,airplane \
--cfg_file ave_13x13.cfg \
--nbands 3 \
--weight_file ave_13x13_boats_planes.weights \
--train_images_list_file boat_airplane_all.txt \
--single_gpu_machine 0 \
--keep_valid_slices False \
--max_batches 60000 \
--gpu 0
\# e.g. test on boats, cars, and airplanes
cd /raid/local/src/yolt2/results/
python ../scripts/yolt2.py \
--mode valid \
--outname qgis_labels_all_boats_planes_cars_buffer \
--object_labels_str airplane,airport,boat,boat_harbor,car \
--cfg_file ave_26x26.cfg \
--valid_weight_dir train_cowc_cars_qgis_boats_planes_cfg=ave_26x26_2017_11_28_23-11-36 \
--weight_file ave_26x26_30000_tmp.weights \
--valid_testims_dir qgis_validation/all \
--keep_valid_slices False \
--valid_make_pngs True \
--valid_make_legend_and_title False \
--edge_buffer_valid 1 \
--valid_box_rescale_frac 1 \
--plot_thresh_str 0.4 \
--slice_sizes_str 416 \
--slice_overlap 0.2 \
--gpu 2
- Include train/test example
- Upload data preparation scripts
- Describe multispectral data handling
- Describle initial results with YOLOv3
- Describe improve labeling methods
If you plan on using YOLT in your work, please consider citing YOLO and YOLT