forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
essentials.jl
753 lines (612 loc) · 19.7 KB
/
essentials.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
# This file is a part of Julia. License is MIT: https://julialang.org/license
using Core: CodeInfo
const Callable = Union{Function,Type}
const Bottom = Union{}
abstract type AbstractSet{T} end
abstract type Associative{K,V} end
# The real @inline macro is not available until after array.jl, so this
# internal macro splices the meta Expr directly into the function body.
macro _inline_meta()
Expr(:meta, :inline)
end
macro _noinline_meta()
Expr(:meta, :noinline)
end
macro _gc_preserve_begin(arg1)
Expr(:gc_preserve_begin, esc(arg1))
end
macro _gc_preserve_end(token)
Expr(:gc_preserve_end, esc(token))
end
"""
@nospecialize
Applied to a function argument name, hints to the compiler that the method
should not be specialized for different types of that argument.
This is only a hint for avoiding excess code generation.
Can be applied to an argument within a formal argument list, or in the
function body.
When applied to an argument, the macro must wrap the entire argument
expression.
When used in a function body, the macro must occur in statement position and
before any code.
```julia
function example_function(@nospecialize x)
...
end
function example_function(@nospecialize(x = 1), y)
...
end
function example_function(x, y, z)
@nospecialize x y
...
end
```
"""
macro nospecialize(var, vars...)
if isa(var, Expr) && var.head === :(=)
var.head = :kw
end
Expr(:meta, :nospecialize, var, vars...)
end
macro _pure_meta()
Expr(:meta, :pure)
end
# another version of inlining that propagates an inbounds context
macro _propagate_inbounds_meta()
Expr(:meta, :inline, :propagate_inbounds)
end
"""
convert(T, x)
Convert `x` to a value of type `T`.
If `T` is an [`Integer`](@ref) type, an [`InexactError`](@ref) will be raised if `x`
is not representable by `T`, for example if `x` is not integer-valued, or is outside the
range supported by `T`.
# Examples
```jldoctest
julia> convert(Int, 3.0)
3
julia> convert(Int, 3.5)
ERROR: InexactError: convert(Int64, 3.5)
Stacktrace:
[1] convert(::Type{Int64}, ::Float64) at ./float.jl:703
```
If `T` is a [`AbstractFloat`](@ref) or [`Rational`](@ref) type,
then it will return the closest value to `x` representable by `T`.
```jldoctest
julia> x = 1/3
0.3333333333333333
julia> convert(Float32, x)
0.33333334f0
julia> convert(Rational{Int32}, x)
1//3
julia> convert(Rational{Int64}, x)
6004799503160661//18014398509481984
```
If `T` is a collection type and `x` a collection, the result of `convert(T, x)` may alias
`x`.
```jldoctest
julia> x = Int[1,2,3];
julia> y = convert(Vector{Int}, x);
julia> y === x
true
```
Similarly, if `T` is a composite type and `x` a related instance, the result of
`convert(T, x)` may alias part or all of `x`.
```jldoctest
julia> x = speye(5);
julia> typeof(x)
SparseMatrixCSC{Float64,Int64}
julia> y = convert(SparseMatrixCSC{Float64,Int64}, x);
julia> z = convert(SparseMatrixCSC{Float32,Int64}, y);
julia> y === x
true
julia> z === x
false
julia> z.colptr === x.colptr
true
```
"""
function convert end
convert(::Type{Any}, @nospecialize(x)) = x
convert(::Type{T}, x::T) where {T} = x
"""
@eval [mod,] ex
Evaluate an expression with values interpolated into it using `eval`.
If two arguments are provided, the first is the module to evaluate in.
"""
macro eval(ex)
:(eval($__module__, $(Expr(:quote,ex))))
end
macro eval(mod, ex)
:(eval($(esc(mod)), $(Expr(:quote,ex))))
end
argtail(x, rest...) = rest
tail(x::Tuple) = argtail(x...)
# TODO: a better / more infer-able definition would pehaps be
# tuple_type_head(T::Type) = fieldtype(T::Type{<:Tuple}, 1)
tuple_type_head(T::UnionAll) = (@_pure_meta; UnionAll(T.var, tuple_type_head(T.body)))
function tuple_type_head(T::Union)
@_pure_meta
return Union{tuple_type_head(T.a), tuple_type_head(T.b)}
end
function tuple_type_head(T::DataType)
@_pure_meta
T.name === Tuple.name || throw(MethodError(tuple_type_head, (T,)))
return unwrapva(T.parameters[1])
end
tuple_type_tail(T::UnionAll) = (@_pure_meta; UnionAll(T.var, tuple_type_tail(T.body)))
function tuple_type_tail(T::Union)
@_pure_meta
return Union{tuple_type_tail(T.a), tuple_type_tail(T.b)}
end
function tuple_type_tail(T::DataType)
@_pure_meta
T.name === Tuple.name || throw(MethodError(tuple_type_tail, (T,)))
if isvatuple(T) && length(T.parameters) == 1
return T
end
return Tuple{argtail(T.parameters...)...}
end
tuple_type_cons(::Type, ::Type{Union{}}) = Union{}
function tuple_type_cons(::Type{S}, ::Type{T}) where T<:Tuple where S
@_pure_meta
Tuple{S, T.parameters...}
end
function unwrap_unionall(@nospecialize(a))
while isa(a,UnionAll)
a = a.body
end
return a
end
function rewrap_unionall(@nospecialize(t), @nospecialize(u))
if !isa(u, UnionAll)
return t
end
return UnionAll(u.var, rewrap_unionall(t, u.body))
end
# replace TypeVars in all enclosing UnionAlls with fresh TypeVars
function rename_unionall(@nospecialize(u))
if !isa(u,UnionAll)
return u
end
body = rename_unionall(u.body)
if body === u.body
body = u
else
body = UnionAll(u.var, body)
end
var = u.var::TypeVar
nv = TypeVar(var.name, var.lb, var.ub)
return UnionAll(nv, body{nv})
end
const _va_typename = Vararg.body.body.name
function isvarargtype(@nospecialize(t))
t = unwrap_unionall(t)
isa(t, DataType) && (t::DataType).name === _va_typename
end
isvatuple(t::DataType) = (n = length(t.parameters); n > 0 && isvarargtype(t.parameters[n]))
function unwrapva(@nospecialize(t))
t2 = unwrap_unionall(t)
isvarargtype(t2) ? t2.parameters[1] : t
end
typename(a) = error("typename does not apply to this type")
typename(a::DataType) = a.name
function typename(a::Union)
ta = typename(a.a)
tb = typename(a.b)
ta === tb ? tb : error("typename does not apply to unions whose components have different typenames")
end
typename(union::UnionAll) = typename(union.body)
convert(::Type{T}, x::T) where {T<:Tuple{Any, Vararg{Any}}} = x
convert(::Type{T}, x::Tuple{Any, Vararg{Any}}) where {T<:Tuple} =
(convert(tuple_type_head(T), x[1]), convert(tuple_type_tail(T), tail(x))...)
# TODO: the following definitions are equivalent (behaviorally) to the above method
# I think they may be faster / more efficient for inference,
# if we could enable them, but are they?
# TODO: These currently can't be used (#21026, #23017) since with
# z(::Type{<:Tuple{Vararg{T}}}) where {T} = T
# calling
# z(Tuple{Val{T}} where T)
# fails, even though `Type{Tuple{Val}} == Type{Tuple{Val{S}} where S}`
# and so T should be `Val` (aka `Val{S} where S`)
#convert(_::Type{Tuple{S}}, x::Tuple{S}) where {S} = x
#convert(_::Type{Tuple{S}}, x::Tuple{Any}) where {S} = (convert(S, x[1]),)
#convert(_::Type{T}, x::T) where {S, N, T<:Tuple{S, Vararg{S, N}}} = x
#convert(_::Type{Tuple{S, Vararg{S, N}}},
# x::Tuple{Any, Vararg{Any, N}}) where
# {S, N} = cnvt_all(S, x...)
#convert(_::Type{Tuple{Vararg{S, N}}},
# x::Tuple{Vararg{Any, N}}) where
# {S, N} = cnvt_all(S, x...)
# TODO: These currently can't be used since
# Type{NTuple} <: (Type{Tuple{Vararg{S}}} where S) is true
# even though the value S doesn't exist
#convert(_::Type{Tuple{Vararg{S}}},
# x::Tuple{Any, Vararg{Any}}) where
# {S} = cnvt_all(S, x...)
#convert(_::Type{Tuple{Vararg{S}}},
# x::Tuple{Vararg{Any}}) where
# {S} = cnvt_all(S, x...)
#cnvt_all(T) = ()
#cnvt_all(T, x, rest...) = (convert(T, x), cnvt_all(T, rest...)...)
# TODO: These may be necessary if the above are enabled
#convert(::Type{Tuple{}}, ::Tuple{}) = ()
#convert(::Type{Tuple{Vararg{S}}} where S, ::Tuple{}) = ()
"""
oftype(x, y)
Convert `y` to the type of `x` (`convert(typeof(x), y)`).
"""
oftype(x, y) = convert(typeof(x), y)
unsigned(x::Int) = reinterpret(UInt, x)
signed(x::UInt) = reinterpret(Int, x)
# conversions used by ccall
ptr_arg_cconvert(::Type{Ptr{T}}, x) where {T} = cconvert(T, x)
ptr_arg_unsafe_convert(::Type{Ptr{T}}, x) where {T} = unsafe_convert(T, x)
ptr_arg_unsafe_convert(::Type{Ptr{Void}}, x) = x
"""
cconvert(T,x)
Convert `x` to a value to be passed to C code as type `T`, typically by calling `convert(T, x)`.
In cases where `x` cannot be safely converted to `T`, unlike [`convert`](@ref), `cconvert` may
return an object of a type different from `T`, which however is suitable for
[`unsafe_convert`](@ref) to handle. The result of this function should be kept valid (for the GC)
until the result of [`unsafe_convert`](@ref) is not needed anymore.
This can be used to allocate memory that will be accessed by the `ccall`.
If multiple objects need to be allocated, a tuple of the objects can be used as return value.
Neither `convert` nor `cconvert` should take a Julia object and turn it into a `Ptr`.
"""
function cconvert end
cconvert(T::Type, x) = convert(T, x) # do the conversion eagerly in most cases
cconvert(::Type{<:Ptr}, x) = x # but defer the conversion to Ptr to unsafe_convert
unsafe_convert(::Type{T}, x::T) where {T} = x # unsafe_convert (like convert) defaults to assuming the convert occurred
unsafe_convert(::Type{T}, x::T) where {T<:Ptr} = x # to resolve ambiguity with the next method
unsafe_convert(::Type{P}, x::Ptr) where {P<:Ptr} = convert(P, x)
"""
reinterpret(type, A)
Change the type-interpretation of a block of memory.
For arrays, this constructs a view of the array with the same binary data as the given
array, but with the specified element type.
For example,
`reinterpret(Float32, UInt32(7))` interprets the 4 bytes corresponding to `UInt32(7)` as a
[`Float32`](@ref).
# Examples
```jldoctest
julia> reinterpret(Float32, UInt32(7))
1.0f-44
julia> reinterpret(Float32, UInt32[1 2 3 4 5])
1×5 reinterpret(Float32, ::Array{UInt32,2}):
1.4013e-45 2.8026e-45 4.2039e-45 5.60519e-45 7.00649e-45
```
"""
reinterpret(::Type{T}, x) where {T} = bitcast(T, x)
reinterpret(::Type{Unsigned}, x::Float16) = reinterpret(UInt16,x)
reinterpret(::Type{Signed}, x::Float16) = reinterpret(Int16,x)
"""
sizeof(T)
Size, in bytes, of the canonical binary representation of the given DataType `T`, if any.
# Examples
```jldoctest
julia> sizeof(Float32)
4
julia> sizeof(Complex128)
16
```
If `T` does not have a specific size, an error is thrown.
```jldoctest
julia> sizeof(Base.LinAlg.LU)
ERROR: argument is an abstract type; size is indeterminate
Stacktrace:
[...]
```
"""
sizeof(x) = Core.sizeof(x)
function append_any(xs...)
# used by apply() and quote
# must be a separate function from append(), since apply() needs this
# exact function.
out = Vector{Any}(4)
l = 4
i = 1
for x in xs
for y in x
if i > l
ccall(:jl_array_grow_end, Void, (Any, UInt), out, 16)
l += 16
end
Core.arrayset(true, out, y, i)
i += 1
end
end
ccall(:jl_array_del_end, Void, (Any, UInt), out, l-i+1)
out
end
# simple Array{Any} operations needed for bootstrap
@eval setindex!(A::Array{Any}, @nospecialize(x), i::Int) = Core.arrayset($(Expr(:boundscheck)), A, x, i)
"""
precompile(f, args::Tuple{Vararg{Any}})
Compile the given function `f` for the argument tuple (of types) `args`, but do not execute it.
"""
function precompile(@nospecialize(f), args::Tuple)
ccall(:jl_compile_hint, Int32, (Any,), Tuple{Core.Typeof(f), args...}) != 0
end
function precompile(argt::Type)
ccall(:jl_compile_hint, Int32, (Any,), argt) != 0
end
"""
esc(e)
Only valid in the context of an `Expr` returned from a macro. Prevents the macro hygiene
pass from turning embedded variables into gensym variables. See the [Macros](@ref man-macros)
section of the Metaprogramming chapter of the manual for more details and examples.
"""
esc(@nospecialize(e)) = Expr(:escape, e)
"""
@boundscheck(blk)
Annotates the expression `blk` as a bounds checking block, allowing it to be elided by [`@inbounds`](@ref).
Note that the function in which `@boundscheck` is written must be inlined into
its caller with [`@inline`](@ref) in order for `@inbounds` to have effect.
```jldoctest
julia> @inline function g(A, i)
@boundscheck checkbounds(A, i)
return "accessing (\$A)[\$i]"
end
f1() = return g(1:2, -1)
f2() = @inbounds return g(1:2, -1)
f2 (generic function with 1 method)
julia> f1()
ERROR: BoundsError: attempt to access 2-element UnitRange{Int64} at index [-1]
Stacktrace:
[1] throw_boundserror(::UnitRange{Int64}, ::Tuple{Int64}) at ./abstractarray.jl:435
[2] checkbounds at ./abstractarray.jl:399 [inlined]
[3] g at ./none:2 [inlined]
[4] f1() at ./none:1
julia> f2()
"accessing (1:2)[-1]"
```
!!! warning
The `@boundscheck` annotation allows you, as a library writer, to opt-in to
allowing *other code* to remove your bounds checks with [`@inbounds`](@ref).
As noted there, the caller must verify—using information they can access—that
their accesses are valid before using `@inbounds`. For indexing into your
[`AbstractArray`](@ref) subclasses, for example, this involves checking the
indices against its [`size`](@ref). Therefore, `@boundscheck` annotations
should only be added to a [`getindex`](@ref) or [`setindex!`](@ref)
implementation after you are certain its behavior is correct.
"""
macro boundscheck(blk)
return Expr(:if, Expr(:boundscheck), esc(blk))
end
"""
@inbounds(blk)
Eliminates array bounds checking within expressions.
In the example below the in-range check for referencing
element `i` of array `A` is skipped to improve performance.
```julia
function sum(A::AbstractArray)
r = zero(eltype(A))
for i = 1:length(A)
@inbounds r += A[i]
end
return r
end
```
!!! warning
Using `@inbounds` may return incorrect results/crashes/corruption
for out-of-bounds indices. The user is responsible for checking it manually.
Only use `@inbounds` when it is certain from the information locally available
that all accesses are in bounds.
"""
macro inbounds(blk)
return Expr(:block,
Expr(:inbounds, true),
esc(blk),
Expr(:inbounds, :pop))
end
"""
@label name
Labels a statement with the symbolic label `name`. The label marks the end-point
of an unconditional jump with [`@goto name`](@ref).
"""
macro label(name::Symbol)
return esc(Expr(:symboliclabel, name))
end
"""
@goto name
`@goto name` unconditionally jumps to the statement at the location [`@label name`](@ref).
`@label` and `@goto` cannot create jumps to different top-level statements. Attempts cause an
error. To still use `@goto`, enclose the `@label` and `@goto` in a block.
"""
macro goto(name::Symbol)
return esc(Expr(:symbolicgoto, name))
end
# SimpleVector
function getindex(v::SimpleVector, i::Int)
@boundscheck if !(1 <= i <= length(v))
throw(BoundsError(v,i))
end
t = @_gc_preserve_begin v
x = unsafe_load(convert(Ptr{Ptr{Void}},data_pointer_from_objref(v)) + i*sizeof(Ptr))
x == C_NULL && throw(UndefRefError())
o = unsafe_pointer_to_objref(x)
@_gc_preserve_end t
return o
end
function length(v::SimpleVector)
t = @_gc_preserve_begin v
l = unsafe_load(convert(Ptr{Int},data_pointer_from_objref(v)))
@_gc_preserve_end t
return l
end
endof(v::SimpleVector) = length(v)
start(v::SimpleVector) = 1
next(v::SimpleVector,i) = (v[i],i+1)
done(v::SimpleVector,i) = (length(v) < i)
isempty(v::SimpleVector) = (length(v) == 0)
indices(v::SimpleVector) = (OneTo(length(v)),)
linearindices(v::SimpleVector) = indices(v, 1)
indices(v::SimpleVector, d) = d <= 1 ? indices(v)[d] : OneTo(1)
function ==(v1::SimpleVector, v2::SimpleVector)
length(v1)==length(v2) || return false
for i = 1:length(v1)
v1[i] == v2[i] || return false
end
return true
end
map(f, v::SimpleVector) = Any[ f(v[i]) for i = 1:length(v) ]
getindex(v::SimpleVector, I::AbstractArray) = Core.svec(Any[ v[i] for i in I ]...)
"""
isassigned(array, i) -> Bool
Tests whether the given array has a value associated with index `i`. Returns `false`
if the index is out of bounds, or has an undefined reference.
```jldoctest
julia> isassigned(rand(3, 3), 5)
true
julia> isassigned(rand(3, 3), 3 * 3 + 1)
false
julia> mutable struct Foo end
julia> v = similar(rand(3), Foo)
3-element Array{Foo,1}:
#undef
#undef
#undef
julia> isassigned(v, 1)
false
```
"""
function isassigned end
function isassigned(v::SimpleVector, i::Int)
@boundscheck 1 <= i <= length(v) || return false
t = @_gc_preserve_begin v
x = unsafe_load(convert(Ptr{Ptr{Void}},data_pointer_from_objref(v)) + i*sizeof(Ptr))
@_gc_preserve_end t
return x != C_NULL
end
"""
Colon()
Colons (:) are used to signify indexing entire objects or dimensions at once.
Very few operations are defined on Colons directly; instead they are converted
by [`to_indices`](@ref) to an internal vector type (`Base.Slice`) to represent the
collection of indices they span before being used.
"""
struct Colon
end
const (:) = Colon()
"""
Val(c)
Return `Val{c}()`, which contains no run-time data. Types like this can be used to
pass the information between functions through the value `c`, which must be an `isbits`
value. The intent of this construct is to be able to dispatch on constants directly (at
compile time) without having to test the value of the constant at run time.
# Examples
```jldoctest
julia> f(::Val{true}) = "Good"
f (generic function with 1 method)
julia> f(::Val{false}) = "Bad"
f (generic function with 2 methods)
julia> f(Val(true))
"Good"
```
"""
struct Val{x}
end
Val(x) = (@_pure_meta; Val{x}())
# used by keyword arg call lowering
function vector_any(@nospecialize xs...)
n = length(xs)
a = Vector{Any}(n)
@inbounds for i = 1:n
Core.arrayset(false, a, xs[i], i)
end
a
end
function as_kwargs(xs::Union{AbstractArray,Associative})
n = length(xs)
to = Vector{Any}(n*2)
i = 1
for (k, v) in xs
to[i] = k::Symbol
to[i+1] = v
i += 2
end
return to
end
function as_kwargs(xs)
to = Vector{Any}(0)
for (k, v) in xs
ccall(:jl_array_ptr_1d_push2, Void, (Any, Any, Any), to, k::Symbol, v)
end
return to
end
"""
invokelatest(f, args...; kwargs...)
Calls `f(args...; kwargs...)`, but guarantees that the most recent method of `f`
will be executed. This is useful in specialized circumstances,
e.g. long-running event loops or callback functions that may
call obsolete versions of a function `f`.
(The drawback is that `invokelatest` is somewhat slower than calling
`f` directly, and the type of the result cannot be inferred by the compiler.)
"""
function invokelatest(f, args...; kwargs...)
# We use a closure (`inner`) to handle kwargs.
inner() = f(args...; kwargs...)
Core._apply_latest(inner)
end
# iteration protocol
"""
next(iter, state) -> item, state
For a given iterable object and iteration state, return the current item and the next iteration state.
# Examples
```jldoctest
julia> next(1:5, 3)
(3, 4)
julia> next(1:5, 5)
(5, 6)
```
"""
function next end
"""
start(iter) -> state
Get initial iteration state for an iterable object.
# Examples
```jldoctest
julia> start(1:5)
1
julia> start([1;2;3])
1
julia> start([4;2;3])
1
```
"""
function start end
"""
done(iter, state) -> Bool
Test whether we are done iterating.
# Examples
```jldoctest
julia> done(1:5, 3)
false
julia> done(1:5, 5)
false
julia> done(1:5, 6)
true
```
"""
function done end
"""
isempty(collection) -> Bool
Determine whether a collection is empty (has no elements).
# Examples
```jldoctest
julia> isempty([])
true
julia> isempty([1 2 3])
false
```
"""
isempty(itr) = done(itr, start(itr))
"""
values(iterator)
For an iterator or collection that has keys and values, return an iterator
over the values.
This function simply returns its argument by default, since the elements
of a general iterator are normally considered its "values".
"""
values(itr) = itr