forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
reducedim.jl
448 lines (393 loc) · 19.8 KB
/
reducedim.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
# This file is a part of Julia. License is MIT: https://julialang.org/license
using Random
# main tests
# issue #35800
# tested very early since it can be state-dependent
@test @inferred(mapreduce(x->count(!iszero,x), +, [rand(1)]; init = 0.)) == 1.0
function safe_mapslices(op, A, region)
newregion = intersect(region, 1:ndims(A))
return isempty(newregion) ? A : mapslices(op, A, dims = newregion)
end
safe_sum(A::Array{T}, region) where {T} = safe_mapslices(sum, A, region)
safe_prod(A::Array{T}, region) where {T} = safe_mapslices(prod, A, region)
safe_maximum(A::Array{T}, region) where {T} = safe_mapslices(maximum, A, region)
safe_minimum(A::Array{T}, region) where {T} = safe_mapslices(minimum, A, region)
safe_count(A::AbstractArray{T}, region) where {T} = safe_mapslices(count, A, region)
safe_sumabs(A::Array{T}, region) where {T} = safe_mapslices(sum, abs.(A), region)
safe_sumabs2(A::Array{T}, region) where {T} = safe_mapslices(sum, abs2.(A), region)
safe_maxabs(A::Array{T}, region) where {T} = safe_mapslices(maximum, abs.(A), region)
safe_minabs(A::Array{T}, region) where {T} = safe_mapslices(minimum, abs.(A), region)
@testset "test reductions over region: $region" for region in Any[
1, 2, 3, 4, 5, (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4),
(1, 2, 3), (1, 3, 4), (2, 3, 4), (1, 2, 3, 4)]
Areduc = rand(3, 4, 5, 6)
Breduc = rand(Bool, 3, 4, 5, 6)
@assert axes(Areduc) == axes(Breduc)
r = fill(NaN, map(length, Base.reduced_indices(axes(Areduc), region)))
@test sum!(r, Areduc) ≈ safe_sum(Areduc, region)
@test prod!(r, Areduc) ≈ safe_prod(Areduc, region)
@test maximum!(r, Areduc) ≈ safe_maximum(Areduc, region)
@test minimum!(r, Areduc) ≈ safe_minimum(Areduc, region)
@test count!(r, Breduc) ≈ safe_count(Breduc, region)
@test sum!(abs, r, Areduc) ≈ safe_sumabs(Areduc, region)
@test sum!(abs2, r, Areduc) ≈ safe_sumabs2(Areduc, region)
@test maximum!(abs, r, Areduc) ≈ safe_maxabs(Areduc, region)
@test minimum!(abs, r, Areduc) ≈ safe_minabs(Areduc, region)
@test count!(!, r, Breduc) ≈ safe_count(.!Breduc, region)
# With init=false
r2 = similar(r)
fill!(r, 1)
@test sum!(r, Areduc, init=false) ≈ safe_sum(Areduc, region) .+ 1
fill!(r, 2.2)
@test prod!(r, Areduc, init=false) ≈ safe_prod(Areduc, region)*2.2
fill!(r, 1.8)
@test maximum!(r, Areduc, init=false) ≈ fill!(r2, 1.8)
fill!(r, -0.2)
@test minimum!(r, Areduc, init=false) ≈ fill!(r2, -0.2)
fill!(r, 1)
@test count!(r, Breduc, init=false) ≈ safe_count(Breduc, region) .+ 1
fill!(r, 8.1)
@test sum!(abs, r, Areduc, init=false) ≈ safe_sumabs(Areduc, region) .+ 8.1
fill!(r, 8.1)
@test sum!(abs2, r, Areduc, init=false) ≈ safe_sumabs2(Areduc, region) .+ 8.1
fill!(r, 1.5)
@test maximum!(abs, r, Areduc, init=false) ≈ fill!(r2, 1.5)
fill!(r, -1.5)
@test minimum!(abs, r, Areduc, init=false) ≈ fill!(r2, -1.5)
fill!(r, 1)
@test count!(!, r, Breduc, init=false) ≈ safe_count(.!Breduc, region) .+ 1
@test @inferred(sum(Areduc, dims=region)) ≈ safe_sum(Areduc, region)
@test @inferred(prod(Areduc, dims=region)) ≈ safe_prod(Areduc, region)
@test @inferred(maximum(Areduc, dims=region)) ≈ safe_maximum(Areduc, region)
@test @inferred(minimum(Areduc, dims=region)) ≈ safe_minimum(Areduc, region)
@test @inferred(count(Breduc, dims=region)) ≈ safe_count(Breduc, region)
@test @inferred(sum(abs, Areduc, dims=region)) ≈ safe_sumabs(Areduc, region)
@test @inferred(sum(abs2, Areduc, dims=region)) ≈ safe_sumabs2(Areduc, region)
@test @inferred(maximum(abs, Areduc, dims=region)) ≈ safe_maxabs(Areduc, region)
@test @inferred(minimum(abs, Areduc, dims=region)) ≈ safe_minabs(Areduc, region)
@test @inferred(count(!, Breduc, dims=region)) ≈ safe_count(.!Breduc, region)
end
# Combining dims and init
A = Array{Int}(undef, 0, 3)
@test_throws ArgumentError maximum(A; dims=1)
@test maximum(A; dims=1, init=-1) == reshape([-1,-1,-1], 1, 3)
# Test reduction along first dimension; this is special-cased for
# size(A, 1) >= 16
Breduc = rand(64, 3)
r = fill(NaN, map(length, Base.reduced_indices(axes(Breduc), 1)))
@test sum!(r, Breduc) ≈ safe_sum(Breduc, 1)
@test sum!(abs, r, Breduc) ≈ safe_sumabs(Breduc, 1)
@test sum!(abs2, r, Breduc) ≈ safe_sumabs2(Breduc, 1)
@test sum(Breduc, dims=1) ≈ safe_sum(Breduc, 1)
@test sum(abs, Breduc, dims=1) ≈ safe_sumabs(Breduc, 1)
@test sum(abs2, Breduc, dims=1) ≈ safe_sumabs2(Breduc, 1)
fill!(r, 4.2)
@test sum!(r, Breduc, init=false) ≈ safe_sum(Breduc, 1) .+ 4.2
fill!(r, -6.3)
@test sum!(abs, r, Breduc, init=false) ≈ safe_sumabs(Breduc, 1) .- 6.3
fill!(r, -1.1)
@test sum!(abs2, r, Breduc, init=false) ≈ safe_sumabs2(Breduc, 1) .- 1.1
# Small arrays with init=false
let A = reshape(1:15, 3, 5)
R = fill(1, 3)
@test sum!(R, A, init=false) == [36,41,46]
R = fill(1, 1, 5)
@test sum!(R, A, init=false) == [7 16 25 34 43]
end
let R = [2]
A = reshape(1:6, 3, 2)
@test prod!(R, A, init=false) == [1440]
# min/max
@test reduce(max, A, dims=1) == [3 6]
@test reduce(min, A, dims=2) == reshape([1,2,3], 3, 1)
end
# Small integers
@test @inferred(sum(Int8[1], dims=1)) == [1]
@test @inferred(sum(UInt8[1], dims=1)) == [1]
# Complex types
@test typeof(@inferred(sum([1.0+1.0im], dims=1))) == Vector{ComplexF64}
@test typeof(@inferred(Base.sum(abs, [1.0+1.0im], dims=1))) == Vector{Float64}
@test typeof(@inferred(Base.sum(abs2, [1.0+1.0im], dims=1))) == Vector{Float64}
@test typeof(@inferred(prod([1.0+1.0im], dims=1))) == Vector{ComplexF64}
@test typeof(@inferred(Base.prod(abs, [1.0+1.0im], dims=1))) == Vector{Float64}
@test typeof(@inferred(Base.prod(abs2, [1.0+1.0im], dims=1))) == Vector{Float64}
@testset "heterogeneously typed arrays" begin
for x in (sum(Union{Float32, Float64}[1.0], dims=1),
prod(Union{Float32, Float64}[1.0], dims=1))
@test x == [1.0]
@test x isa Vector{Float64}
end
x = sum(Real[1.0], dims=1)
@test x == [1.0]
@test x isa Vector{Real}
x = mapreduce(cos, +, Union{Int,Missing}[1, 2], dims=1)
@test x == mapreduce(cos, +, [1, 2], dims=1)
@test x isa Vector{Float64}
end
@test reduce((a,b) -> a|b, [true false; false false], dims=1, init=false) == [true false]
let R = reduce((a,b) -> a+b, [1 2; 3 4], dims=2, init=0.0)
@test eltype(R) == Float64
@test R ≈ [3,7]
end
@test reduce((a,b) -> a+b, [1 2; 3 4], dims=1, init=0) == [4 6]
# inferred return types
@test typeof(@inferred(reduce(+, ones(3,3,3), dims=1, init=0.0))) == Array{Float64, 3}
@testset "empty cases" begin
A = Matrix{Int}(undef, 0,1)
@test sum(A) === 0
@test prod(A) === 1
@test_throws ArgumentError minimum(A)
@test_throws ArgumentError maximum(A)
@test isequal(sum(A, dims=1), zeros(Int, 1, 1))
@test isequal(sum(A, dims=2), zeros(Int, 0, 1))
@test isequal(sum(A, dims=(1, 2)), zeros(Int, 1, 1))
@test isequal(sum(A, dims=3), zeros(Int, 0, 1))
@test isequal(prod(A, dims=1), fill(1, 1, 1))
@test isequal(prod(A, dims=2), fill(1, 0, 1))
@test isequal(prod(A, dims=(1, 2)), fill(1, 1, 1))
@test isequal(prod(A, dims=3), fill(1, 0, 1))
for f in (minimum, maximum)
@test_throws ArgumentError f(A, dims=1)
@test isequal(f(A, dims=2), zeros(Int, 0, 1))
@test_throws ArgumentError f(A, dims=(1, 2))
@test isequal(f(A, dims=3), zeros(Int, 0, 1))
end
for f in (findmin, findmax)
@test_throws ArgumentError f(A, dims=1)
@test isequal(f(A, dims=2), (zeros(Int, 0, 1), zeros(Int, 0, 1)))
@test_throws ArgumentError f(A, dims=(1, 2))
@test isequal(f(A, dims=3), (zeros(Int, 0, 1), zeros(Int, 0, 1)))
end
end
## findmin/findmax/minimum/maximum
A = [1.0 5.0 6.0;
5.0 2.0 4.0]
for (tup, rval, rind) in [((1,), [1.0 2.0 4.0], [CartesianIndex(1,1) CartesianIndex(2,2) CartesianIndex(2,3)]),
((2,), reshape([1.0,2.0], 2, 1), reshape([CartesianIndex(1,1),CartesianIndex(2,2)], 2, 1)),
((1,2), fill(1.0,1,1),fill(CartesianIndex(1,1),1,1))]
@test findmin(A, dims=tup) == (rval, rind)
@test findmin!(similar(rval), similar(rind), A) == (rval, rind)
@test isequal(minimum(A, dims=tup), rval)
@test isequal(minimum!(similar(rval), A), rval)
@test isequal(minimum!(copy(rval), A, init=false), rval)
end
for (tup, rval, rind) in [((1,), [5.0 5.0 6.0], [CartesianIndex(2,1) CartesianIndex(1,2) CartesianIndex(1,3)]),
((2,), reshape([6.0,5.0], 2, 1), reshape([CartesianIndex(1,3),CartesianIndex(2,1)], 2, 1)),
((1,2), fill(6.0,1,1),fill(CartesianIndex(1,3),1,1))]
@test findmax(A, dims=tup) == (rval, rind)
@test findmax!(similar(rval), similar(rind), A) == (rval, rind)
@test isequal(maximum(A, dims=tup), rval)
@test isequal(maximum!(similar(rval), A), rval)
@test isequal(maximum!(copy(rval), A, init=false), rval)
end
#issue #23209
A = [1.0 3.0 6.0;
NaN 2.0 4.0]
for (tup, rval, rind) in [((1,), [NaN 2.0 4.0], [CartesianIndex(2,1) CartesianIndex(2,2) CartesianIndex(2,3)]),
((2,), reshape([1.0, NaN], 2, 1), reshape([CartesianIndex(1,1),CartesianIndex(2,1)], 2, 1)),
((1,2), fill(NaN,1,1),fill(CartesianIndex(2,1),1,1))]
@test isequal(findmin(A, dims=tup), (rval, rind))
@test isequal(findmin!(similar(rval), similar(rind), A), (rval, rind))
@test isequal(minimum(A, dims=tup), rval)
@test isequal(minimum!(similar(rval), A), rval)
@test isequal(minimum!(copy(rval), A, init=false), rval)
@test isequal(Base.reducedim!(min, copy(rval), A), rval)
end
for (tup, rval, rind) in [((1,), [NaN 3.0 6.0], [CartesianIndex(2,1) CartesianIndex(1,2) CartesianIndex(1,3)]),
((2,), reshape([6.0, NaN], 2, 1), reshape([CartesianIndex(1,3),CartesianIndex(2,1)], 2, 1)),
((1,2), fill(NaN,1,1),fill(CartesianIndex(2,1),1,1))]
@test isequal(findmax(A, dims=tup), (rval, rind))
@test isequal(findmax!(similar(rval), similar(rind), A), (rval, rind))
@test isequal(maximum(A, dims=tup), rval)
@test isequal(maximum!(similar(rval), A), rval)
@test isequal(maximum!(copy(rval), A, init=false), rval)
@test isequal(Base.reducedim!(max, copy(rval), A), rval)
end
# issue #28320
@testset "reducedim issue with abstract complex arrays" begin
let A = Complex[1.5 0.5]
@test mapreduce(abs2, +, A, dims=2) == reshape([2.5], 1, 1)
@test sum(abs2, A, dims=2) == reshape([2.5], 1, 1)
@test prod(abs2, A, dims=2) == reshape([0.5625], 1, 1)
@test maximum(abs2, A, dims=2) == reshape([2.25], 1, 1)
@test minimum(abs2, A, dims=2) == reshape([0.25], 1, 1)
end
end
A = [1.0 NaN 6.0;
NaN 2.0 4.0]
for (tup, rval, rind) in [((1,), [NaN NaN 4.0], [CartesianIndex(2,1) CartesianIndex(1,2) CartesianIndex(2,3)]),
((2,), reshape([NaN, NaN], 2, 1), reshape([CartesianIndex(1,2),CartesianIndex(2,1)], 2, 1)),
((1,2), fill(NaN,1,1),fill(CartesianIndex(2,1),1,1))]
@test isequal(findmin(A, dims=tup), (rval, rind))
@test isequal(findmin!(similar(rval), similar(rind), A), (rval, rind))
@test isequal(minimum(A, dims=tup), rval)
@test isequal(minimum!(similar(rval), A), rval)
@test isequal(minimum!(copy(rval), A, init=false), rval)
end
for (tup, rval, rind) in [((1,), [NaN NaN 6.0], [CartesianIndex(2,1) CartesianIndex(1,2) CartesianIndex(1,3)]),
((2,), reshape([NaN, NaN], 2, 1), reshape([CartesianIndex(1,2),CartesianIndex(2,1)], 2, 1)),
((1,2), fill(NaN,1,1),fill(CartesianIndex(2,1),1,1))]
@test isequal(findmax(A, dims=tup), (rval, rind))
@test isequal(findmax!(similar(rval), similar(rind), A), (rval, rind))
@test isequal(maximum(A, dims=tup), rval)
@test isequal(maximum!(similar(rval), A), rval)
@test isequal(maximum!(copy(rval), A, init=false), rval)
end
A = [Inf -Inf Inf -Inf;
Inf Inf -Inf -Inf]
for (tup, rval, rind) in [((1,), [Inf -Inf -Inf -Inf], [CartesianIndex(1,1) CartesianIndex(1,2) CartesianIndex(2,3) CartesianIndex(1,4)]),
((2,), reshape([-Inf -Inf], 2, 1), reshape([CartesianIndex(1,2),CartesianIndex(2,3)], 2, 1)),
((1,2), fill(-Inf,1,1),fill(CartesianIndex(1,2),1,1))]
@test isequal(findmin(A, dims=tup), (rval, rind))
@test isequal(findmin!(similar(rval), similar(rind), A), (rval, rind))
@test isequal(minimum(A, dims=tup), rval)
@test isequal(minimum!(similar(rval), A), rval)
@test isequal(minimum!(copy(rval), A, init=false), rval)
end
for (tup, rval, rind) in [((1,), [Inf Inf Inf -Inf], [CartesianIndex(1,1) CartesianIndex(2,2) CartesianIndex(1,3) CartesianIndex(1,4)]),
((2,), reshape([Inf Inf], 2, 1), reshape([CartesianIndex(1,1),CartesianIndex(2,1)], 2, 1)),
((1,2), fill(Inf,1,1),fill(CartesianIndex(1,1),1,1))]
@test isequal(findmax(A, dims=tup), (rval, rind))
@test isequal(findmax!(similar(rval), similar(rind), A), (rval, rind))
@test isequal(maximum(A, dims=tup), rval)
@test isequal(maximum!(similar(rval), A), rval)
@test isequal(maximum!(copy(rval), A, init=false), rval)
end
A = [BigInt(10)]
for (tup, rval, rind) in [((2,), [BigInt(10)], [1])]
@test isequal(findmin(A, dims=tup), (rval, rind))
@test isequal(findmin!(similar(rval), similar(rind), A), (rval, rind))
@test isequal(minimum(A, dims=tup), rval)
@test isequal(minimum!(similar(rval), A), rval)
@test isequal(minimum!(copy(rval), A, init=false), rval)
end
for (tup, rval, rind) in [((2,), [BigInt(10)], [1])]
@test isequal(findmax(A, dims=tup), (rval, rind))
@test isequal(findmax!(similar(rval), similar(rind), A), (rval, rind))
@test isequal(maximum(A, dims=tup), rval)
@test isequal(maximum!(similar(rval), A), rval)
@test isequal(maximum!(copy(rval), A, init=false), rval)
end
A = [BigInt(-10)]
for (tup, rval, rind) in [((2,), [BigInt(-10)], [1])]
@test isequal(findmin(A, dims=tup), (rval, rind))
@test isequal(findmin!(similar(rval), similar(rind), A), (rval, rind))
@test isequal(minimum(A, dims=tup), rval)
@test isequal(minimum!(similar(rval), A), rval)
@test isequal(minimum!(copy(rval), A, init=false), rval)
end
for (tup, rval, rind) in [((2,), [BigInt(-10)], [1])]
@test isequal(findmax(A, dims=tup), (rval, rind))
@test isequal(findmax!(similar(rval), similar(rind), A), (rval, rind))
@test isequal(maximum(A, dims=tup), rval)
@test isequal(maximum!(similar(rval), A), rval)
@test isequal(maximum!(copy(rval), A, init=false), rval)
end
A = [BigInt(10) BigInt(-10)]
for (tup, rval, rind) in [((2,), reshape([BigInt(-10)], 1, 1), reshape([CartesianIndex(1,2)], 1, 1))]
@test isequal(findmin(A, dims=tup), (rval, rind))
@test isequal(findmin!(similar(rval), similar(rind), A), (rval, rind))
@test isequal(minimum(A, dims=tup), rval)
@test isequal(minimum!(similar(rval), A), rval)
@test isequal(minimum!(copy(rval), A, init=false), rval)
end
for (tup, rval, rind) in [((2,), reshape([BigInt(10)], 1, 1), reshape([CartesianIndex(1,1)], 1, 1))]
@test isequal(findmax(A, dims=tup), (rval, rind))
@test isequal(findmax!(similar(rval), similar(rind), A), (rval, rind))
@test isequal(maximum(A, dims=tup), rval)
@test isequal(maximum!(similar(rval), A), rval)
@test isequal(maximum!(copy(rval), A, init=false), rval)
end
A = ["a", "b"]
for (tup, rval, rind) in [((1,), ["a"], [1])]
@test isequal(findmin(A, dims=tup), (rval, rind))
@test isequal(findmin!(similar(rval), similar(rind), A), (rval, rind))
@test isequal(minimum(A, dims=tup), rval)
@test isequal(minimum!(similar(rval), A), rval)
@test isequal(minimum!(copy(rval), A, init=false), rval)
end
for (tup, rval, rind) in [((1,), ["b"], [2])]
@test isequal(findmax(A, dims=tup), (rval, rind))
@test isequal(findmax!(similar(rval), similar(rind), A), (rval, rind))
@test isequal(maximum(A, dims=tup), rval)
@test isequal(maximum!(similar(rval), A), rval)
@test isequal(maximum!(copy(rval), A, init=false), rval)
end
# issue #6672
@test sum(Real[1 2 3; 4 5.3 7.1], dims=2) == reshape([6, 16.4], 2, 1)
@test sum(Any[1 2;3 4], dims=1) == [4 6]
@test sum(Vector{Int}[[1,2],[4,3]], dims=1)[1] == [5,5]
@testset "Issue #10461. region=$region" for region in Any[-1, 0, (-1, 2), [0, 1], (1,-2,3), [0 1;
2 3], "hello"]
Areduc = rand(3, 4, 5, 6)
@test_throws ArgumentError sum(Areduc, dims=region)
@test_throws ArgumentError prod(Areduc, dims=region)
@test_throws ArgumentError maximum(Areduc, dims=region)
@test_throws ArgumentError minimum(Areduc, dims=region)
@test_throws ArgumentError sum(abs, Areduc, dims=region)
@test_throws ArgumentError sum(abs2, Areduc, dims=region)
@test_throws ArgumentError maximum(abs, Areduc, dims=region)
@test_throws ArgumentError minimum(abs, Areduc, dims=region)
end
# issue #26488
@testset "don't map over initial values not provided" begin
@test sum(x->x+1, [1], dims=1)[1] === sum(x->x+1, [1]) === 2
@test prod(x->x+1, [1], dims=1)[1] === prod(x->x+1, [1]) === 2
@test mapreduce(x->x+1, +, [1], dims=1)[1] === mapreduce(x->x+1, +, [1]) === 2
@test mapreduce(x->x+1, *, [1], dims=1)[1] === mapreduce(x->x+1, *, [1]) === 2
@test mapreduce(!, &, [false], dims=1)[1] === mapreduce(!, &, [false]) === true
@test mapreduce(!, |, [true], dims=1)[1] === mapreduce(!, |, [true]) === false
@test mapreduce(x->1/x, max, [1], dims=1)[1] === mapreduce(x->1/x, max, [1]) === 1.0
@test mapreduce(x->-1/x, min, [1], dims=1)[1] === mapreduce(x->-1/x, min, [1]) === -1.0
end
# check type of result
@testset "type of sum(::Array{$T}" for T in [UInt8, Int8, Int32, Int64, BigInt]
result = sum(T[1 2 3; 4 5 6; 7 8 9], dims=2)
@test result == hcat([6, 15, 24])
@test eltype(result) === (T <: Base.SmallSigned ? Int :
T <: Base.SmallUnsigned ? UInt :
T)
end
@testset "argmin/argmax" begin
B = reshape(3^3:-1:1, (3, 3, 3))
@test B[argmax(B, dims=[2, 3])] == maximum(B, dims=[2, 3])
@test B[argmin(B, dims=[2, 3])] == minimum(B, dims=[2, 3])
end
@testset "in-place reductions with mismatched dimensionalities" begin
B = reshape(1:24, 4, 3, 2)
for R in (fill(0, 4), fill(0, 4, 1), fill(0, 4, 1, 1))
@test @inferred(maximum!(R, B)) == reshape(21:24, size(R))
@test @inferred(minimum!(R, B)) == reshape(1:4, size(R))
end
for R in (fill(0, 1, 3), fill(0, 1, 3, 1))
@test @inferred(maximum!(R, B)) == reshape(16:4:24, size(R))
@test @inferred(minimum!(R, B)) == reshape(1:4:9, size(R))
end
@test_throws DimensionMismatch maximum!(fill(0, 4, 1, 1, 1), B)
@test_throws DimensionMismatch minimum!(fill(0, 4, 1, 1, 1), B)
@test_throws DimensionMismatch maximum!(fill(0, 1, 3, 1, 1), B)
@test_throws DimensionMismatch minimum!(fill(0, 1, 3, 1, 1), B)
@test_throws DimensionMismatch maximum!(fill(0, 1, 1, 2, 1), B)
@test_throws DimensionMismatch minimum!(fill(0, 1, 1, 2, 1), B)
end
# issue #26709
@testset "dimensional reduce with custom non-bitstype types" begin
struct Variable
name::Symbol
end
struct AffExpr
vars::Vector{Variable}
end
Base.zero(::Union{Variable, Type{Variable}, AffExpr}) = AffExpr(Variable[])
Base.:+(v::Variable, w::Variable) = AffExpr([v, w])
Base.:+(aff::AffExpr, v::Variable) = AffExpr([aff.vars; v])
Base.:+(aff1::AffExpr, aff2::AffExpr) = AffExpr([aff1.vars; aff2.vars])
Base.:(==)(a::Variable, b::Variable) = a.name == b.name
Base.:(==)(a::AffExpr, b::AffExpr) = a.vars == b.vars
@test sum([Variable(:x), Variable(:y)], dims=1) == [AffExpr([Variable(:x), Variable(:y)])]
end
# count
@testset "count: throw on non-bool types" begin
@test_throws TypeError count([1], dims=1)
@test_throws TypeError count!([1], [1])
end